化簡(jiǎn)多項(xiàng)式(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1為


  1. A.
    (x-2)4
  2. B.
    x4
  3. C.
    (x+1)4
  4. D.
    x4+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對(duì)于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請(qǐng)嘗試求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來表示cos4x.
(2)化簡(jiǎn)cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-3) 2009-2010學(xué)年 第43期 總第199期 北師大課標(biāo) 題型:013

化簡(jiǎn)多項(xiàng)式(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1為

[  ]
A.

(x-2)4

B.

x4

C.

(x+1)4

D.

x4+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對(duì)于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請(qǐng)嘗試求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來表示cos4x.
(2)化簡(jiǎn)cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案