【題目】正方體中, 分別是的中點(diǎn).
(1)證明:平面平面;
(2)在上求一點(diǎn),使得平面.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】試題分析:(1)以D為原點(diǎn),DA,DC,D分別為x,y,z軸建立空間直角坐標(biāo)系,
只需證明兩平面的法向量數(shù)量積為0.(2)設(shè),解得M(2,2λ,λ),由平面,需,可求解。
試題解析: 證明:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系D-xyz,
不妨設(shè)正方體的棱長(zhǎng)為2,則A(2,0,0),E(2,2,1),F(xiàn)(0,1,0),A1(2,0,2), D1(0,0,2).
設(shè)平面AED的法向量為n1=(x1,y1,z1),則
∴
令y1=1,得n1=(0,1,-2).
同理可得平面A1FD1的法向量n2=(0,2,1).
∵n1·n2=0,
∴平面AED⊥平面A1FD1.
(Ⅱ)由于點(diǎn)M在AE上,
∴可設(shè)=λ=λ(0,2,1)=(0,2λ,λ),
可得M(2,2λ,λ),
于是=(0,2λ,λ-2).
要使A1M⊥平面DAE,需A1M⊥AE,
∴·=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=.
故當(dāng)AM=AE時(shí),即點(diǎn)M坐標(biāo)為(2,,)時(shí),A1M⊥平面DAE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=x (m∈N*).
(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;
(2)若該函數(shù)還經(jīng)過(guò)點(diǎn)(2, ),試確定m的值,并求滿(mǎn)足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)L的參數(shù)方程為 ( 為參數(shù)).在以原點(diǎn) 為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,圓C的方程為.
(Ⅰ)寫(xiě)出直線(xiàn)L的傾斜角和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn) P坐標(biāo)為,圓C與直線(xiàn)L交于 A,B兩點(diǎn),求|PA||PB|的值.
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l、m,平面α、β,下列命題正確的是 ( )
A. l∥β,lαα∥β
B. l∥β,m∥β,lα,mαα∥β
C. l∥m,lα,mβα∥β
D. l∥β,m∥β,lα,mα,l∩m=Mα∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人玩擲骰子游戲,甲擲出的點(diǎn)數(shù)記為,乙擲出的點(diǎn)數(shù)記為,
若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根時(shí)甲勝;方程有
兩個(gè)相等的實(shí)數(shù)根時(shí)為“和”;方程沒(méi)有實(shí)數(shù)根時(shí)乙勝.
(1)列出甲、乙兩人“和”的各種情形;
(2)求甲勝的概率.
必要時(shí)可使用此表格
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017屆廣東省珠海市高三上學(xué)期期末考試文數(shù)】已知函數(shù)的最小值為0,其中,設(shè).
(1)求的值;
(2)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(3)討論方程在上根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線(xiàn)的普通方程及極坐標(biāo)方程;
(2)直線(xiàn)的極坐標(biāo)方程是,射線(xiàn): 與曲線(xiàn)交于點(diǎn)與直線(xiàn)交于點(diǎn),求線(xiàn)段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com