【題目】在底面是菱形的四棱錐中,.
(1)證明:平面;
(2)點(diǎn)在棱上.
①如圖1,若點(diǎn)是線段的中點(diǎn),證明:平面;
②如圖2,若,在棱上是否存在點(diǎn),使得平面?證明你的結(jié)論.
【答案】(1)證明見解析;(2)①證明見解析;②存在,證明見解析
【解析】
(1)首先根據(jù)題意得到是等邊三角形,根據(jù)勾股定理得到,,再根據(jù)線面垂直的判定即可證明平面.
(2)①根據(jù)三角形中位線即可得到,再根據(jù)線面平行的判定即可證明平面.②存在是中點(diǎn),使得平面,取中點(diǎn),連結(jié).根據(jù)三角形中位線即可得到面,面,即平面平面,再利用面面平行的性質(zhì)即可得到平面.
(1)在菱形中,,
∴是等邊三角形.
又,故菱形邊長為,
在中,,則
同理.
又面,,
∴平面.
(2)①連結(jié)交于,連接.
在菱形中為中點(diǎn)又是線段的中點(diǎn),
所以.
∵面,面,
∴面.
②存在,是中點(diǎn).
取中點(diǎn),連結(jié).
在中,為中點(diǎn),則,
又∵面,面,∴面.
同理面.
又∵面,,
所以平面平面,
又面∴平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為實數(shù).)
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時,取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ當(dāng)函數(shù)有兩個極值點(diǎn),,且時,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;
②對于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越小;
③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點(diǎn);
④是用來判斷兩個分類變量是否有關(guān)系的隨機(jī)變量,只對于兩個分類變量適合;
以上幾種說法正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面四邊形MNPQ中,MN=,MP=1,MP⊥MN,PQ⊥QM.
(Ⅰ)若PQ=,求NQ的值;
(Ⅱ)若∠MQN=30°,求sin∠QMP的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次演唱會上共10 名演員(每名演員都會唱歌或跳舞),其中7人能唱歌,6人會跳舞.
(1)問既能唱歌又會跳舞的有幾人?
(2)現(xiàn)要選出一個2人唱歌2人伴舞的節(jié)目,有多少種選派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”?
參考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;
(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com