2.若a<0,則$\sqrt{a{x^3}}$=(  )
A.x$\sqrt{ax}$B.x$\sqrt{-ax}$C.-x$\sqrt{-ax}$D.-x$\sqrt{ax}$

分析 由題意可得x≤0,即可求出答案.

解答 解:∵a<0,ax3≥0,
∴x≤0,
∴$\sqrt{a{x^3}}$=|x|$\sqrt{ax}$=-x$\sqrt{ax}$,
故選:D

點評 本題考查了根式的化簡,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.點M的直角坐標($\sqrt{3}$,-1)化成極坐標為(  )
A.(2,$\frac{5π}{6}$)B.(2,$\frac{2π}{3}$)C.(2,$\frac{5π}{3}$)D.(2,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,則$f[f(\frac{1}{4})]$=( 。
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)y=lg(ax2-2x+2)的值域為R,則實數(shù)a的取值范圍為(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四個命題:
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow a$⊥$(\overrightarrow b-\overrightarrow c)$”的否命題,
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若函數(shù)f(x)在定義域內(nèi)存在實數(shù)x0,使得f(x0+1)≥f(x0)+f(1)成立,則稱x0為函數(shù)f(x)的“可增點”.
(1)判斷函數(shù)f(x)=$\frac{1}{x}$是否存在“可增點”?若存在,求出x0的取值范圍; 若不存在,說明理由;
(2)若函數(shù)f(x)=lg(${\frac{a}{{{x^2}+1}}}$)在(0,+∞)上存在“可增點”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.A為圓O:x2+y2=1上的點,B為直線l:x+y-2=0上的點,則線段AB長度的最小值為( 。
A.$\sqrt{2}$B.2C.$\sqrt{2}$-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系xOy中,記二次函數(shù)f(x)=x2+2x-1(x∈R)與兩坐標軸有三個交點,其中與x軸的交點為A,B.經(jīng)過三個交點的圓記為C.
(1)求圓C的方程;
(2)設P為圓C上一點,若直線PA,PB分別交直線x=2于點M,N,則以MN為直徑的圓是否經(jīng)過線段AB上一定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則目標函數(shù)z=2x+y的最小值為-3.

查看答案和解析>>

同步練習冊答案