【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若曲線在點(處的切線與曲線在點處的切線互相垂直,求函數(shù)在區(qū)間上的最大值;

2)設函數(shù),試討論函數(shù)零點的個數(shù).

【答案】1;(2)見解析.

【解析】

1)分別求出y=fx)與y=gx)在x=0處的導數(shù),利用斜率之積等于-1求得,得到fx)解析式,再由導數(shù)判斷fx)在區(qū)間[-11]上單調遞減,從而求得最大值;

2)函數(shù)R上單調遞增,僅在x=1處有一個零點,且x1時,gx)<0,再由導數(shù)分類判定fx)的零點情況,則答案可求.

1)∵f′(x=-3x2+a,g′(x=ex

f′(0=a,g′(0=1

由題意知,,fx)在區(qū)間[-11]上單調遞減,

;

2)函數(shù)gx=ex-eR上單調遞增,僅在x=1處有一個零點,且x1時,gx)<0,

f′x=-3x2+a

①當a≤0時,f′(x)≤0,fx)在R上單調遞減,且過點(0,-),f-1=0

fx)在x≤0時,必有一個零點,此時y=hx)有兩個零點;

②當a0時,令f′(x=-3x2+a=0,解得00

是函數(shù)fx)的一個極小值點,是函數(shù)fx)的一個極大值點.

f-=0,

現(xiàn)在討論極大值的情況:

f=

f)<0,即a時,函數(shù)fx)在(0,+∞)上恒小于0,此時y=hx)有兩個零點;

f=0,即a=時,函數(shù)fx)在(0,+∞)上有一個零點,,此時y=hx)有三個零點;

f)>0,即a時,函數(shù)fx)在(0,+∞)上有兩個零點,一個零點小于,一個零點大于

f1=a-0,即a時,y=hx)有四個零點;

f1=a=0,即a=時,y=hx)有三個零點;

f1=a-0,即a時,y=hx)有兩個零點.

綜上所述,當aa時,y=hx)有兩個零點;當a=a=時,y=hx)有三個零點;當a時,y=hx)有四個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)

1)求b的值,并求出函數(shù)的定義域

2)若存在區(qū)間,使得時,的取值范圍為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點,且在點處的切線與直線平行.

1)求實數(shù),的值;

2)若對任意的,函數(shù)在區(qū)間上總不是單調函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,平面外一點在平內的射影恰在邊的中點上,

1)求證:平面平面

2)若在線段上,且平面,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的數(shù)表為森德拉姆篩(森德拉姆,東印度學者),其特點是每行每列都成等差數(shù)列.在此表中,數(shù)字“121”出現(xiàn)的次數(shù)為___________.

2

3

4

5

6

7

……

3

5

7

9

11

13

……

4

7

10

13

16

19

……

5

9

13

17

21

25

……

6

11

16

21

26

31

……

7

13

19

25

31

37

……

……

……

……

……

……

……

……

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點P(3,﹣4)作圓(x1)2+y22的切線,切點分別為A,B,則直線AB的方程為(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商家誠邀甲、乙兩名圍棋高手進行一場網絡國棋比賽,每比賽一局商家要向每名棋手支付2000元對局費,同時商家每局從轉讓網絡轉播權及廣告宣傳中獲利12100元,從兩名棋手以往比賽中得知,甲每局獲勝的概率為,乙每局獲勝的概率為,兩名棋手約定:最多下五局,先連勝兩局者獲勝,比賽結束,比賽結束后,商家為獲勝者頒發(fā)5000元的獎金,若沒有決出獲勝者則各頒發(fā)2500.

1)求下完五局且甲獲勝的概率是多少;

2)求商家從這場網絡棋賽中獲得的收益的數(shù)學期望是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】伴隨著科技的迅速發(fā)展,國民對“5G”一詞越來越熟悉,“5G”全稱是第五代移動電話行動通信標準,也稱第五代移動通信技術。20171210日,工信部正式對外公布,已向中國電倌、中國移動、中國聯(lián)通發(fā)放了5G系統(tǒng)中低頻率使用許可。2019218日上海虹橋火車站正式啟動5G網絡建設。為了了解某市市民對“5G”的關注情況,通過問卷調查等方式研究市民對該市300萬人口進行統(tǒng)計分析,數(shù)據(jù)分析結果顯示:約60%的市民掌握一定5G知識(即問卷調查分數(shù)在80分以上)”將這部分市民稱為“5G愛好者。某機構在“5G愛好者中隨機抽取了年齡在15-45歲之間的100人按照年齡分布(如圖所示),其分組區(qū)間為:,,,,,.

(1)求頻率直方圖中的a的值;

(2)估計全市居民中35歲以上的“5G愛好者”的人數(shù);

(3)若該市政府制定政策:按照年齡從小到大,選拔45%的“5G愛好者進行5G的專業(yè)知識深度培養(yǎng),將當選者稱成按照上述政策及頻率分布直方圖,估計該市“5G達人”的年齡上限.

查看答案和解析>>

同步練習冊答案