15.若α是第四象角,且3sin2α-sin($\frac{π}{2}$-α)-1=0,則tanα=-$\frac{\sqrt{5}}{2}$.

分析 根據(jù)同角的三角函數(shù)的關(guān)系式,結(jié)合一元二次方程進(jìn)行求解即可.

解答 解:∵3sin2α-sin($\frac{π}{2}$-α)-1=0,
∴3sin2α-cosα-1=0
即3-3cos2α-cosα-1=0,
即3cos2α+cosα-2=0,
得cosα=-1或cosα=$\frac{2}{3}$,
∵α是第四象角,∴cosα=$\frac{2}{3}$,
則sinα=-$\sqrt{1-(\frac{2}{3})^{2}}$=-$\frac{\sqrt{5}}{3}$,
則tanα=$\frac{sinα}{cosα}=\frac{-\frac{\sqrt{5}}{3}}{\frac{2}{3}}$=-$\frac{\sqrt{5}}{2}$,
故答案為:-$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)值的計(jì)算,根據(jù)同角的三角函數(shù)的關(guān)系式,結(jié)合一元二次方程是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$滿足<$\overrightarrow{a}$,$\overrightarrow$>=60°,且{|$\overrightarrow{a}$|,|$\overrightarrow$|,|$\overrightarrow{c}$|}={1,2,3},則|$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$|的最大值是( 。
A.$\sqrt{7}+3$B.$\sqrt{19}+1$C.$\sqrt{13}+2$D.$\sqrt{15}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.化簡(jiǎn):sin(-α)cos(π+α)tan(π-α)=-sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)點(diǎn)M(2,4)且與拋物線$\left\{\begin{array}{l}{x=2{t}^{2}}\\{y=4t}\end{array}\right.$(t為參數(shù))只有一個(gè)公共點(diǎn)的直線有( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow$=(-1,$\sqrt{3}$),若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=($\sqrt{3},-3$)或($-\sqrt{3},3$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若k為整數(shù),則cos(kπ+$\frac{π}{3}$)的值為( 。
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“l(fā)nx<1”是“x<e”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=1og2$\frac{1-x}{1+x}$.
(1)判斷f(x)的單調(diào)性;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定積分$\int_0^1{({2x-{e^x}})dx}$的值為2-e.

查看答案和解析>>

同步練習(xí)冊(cè)答案