精英家教網如圖,在直三棱柱ABC-A1B1C1中,A1A=AC=
2
AB
,AB=BC=a,D為BB1的中點.
(1)證明:平面ADC1⊥平面ACC1A1;
(2)求平面ADC1與平面ABC所成的二面角大小.
分析:(1)以B為坐標原點建立空間坐標系,分析求出向量
DE
AC1
,
CC1
的坐標,進而根據(jù)
DE
AC1
=0,
DE
CC1
=0,結合線面垂直的判定定理得到DE⊥面A1ACC1,再由面面垂直的判定定理即可得到平面ADC1⊥面A1ACC1
(2)求出平面ADC1與平面ABC的法向量坐標,代入向量夾角公式,求出平面ADC1與平面ABC所成的二面角的余弦值,進而可以求出平面ADC1與平面ABC所成的二面角.
解答:精英家教網解:由勾股定理知,AB⊥BC,則如圖所示建立直角坐標系,坐標分別為:
B(0,0,0),A(0,a,0),C(a,0,0),B1(0,0,
2
a),A1(0,a,
2
a)C1(a,0,
2
a)
(1)∵D1,E分別是BB1,AC1之中點.
∴D(0,0,
2
2
a),E(
a
2
,
a
2
,
2
2

DE
=(
a
2
,
a
2
,0),
CC1
=(0,0,
2
a),
AC1
=(a,-a,
2
a)
DE
AC1
=0,
DE
CC1
=0,
∴DE⊥面A1ACC1,∴平面ADC1⊥面A1ACC1.…(6分)
(2)顯然平面ABC的法向量為
m
=(0,0,1),
設平面ADC1的法向量
n
=(x1,y1,z1
),且
AD
=(0,-a,
2
2
a),
AC1
=(a,-a,
2
a)
AD
n
=0
AC1
n
=0
n
=(-
2
2
,
2
2
,1),…(8分)
∴cos<
m,
n
>=
1
1
2
+
1
2
+1
•1
=
1
2
=
2
2
,
故兩平面的夾角為
π
4
…(12分)
點評:本題考查的知識點是用空間向量求平面間的夾角,平面與平面垂直的判定,其中建立空間坐標系,將空間線面關系判定及二面角問題轉化為向量夾角問題是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習冊答案