【題目】已知函數(shù),.

1)求函數(shù)的單調增區(qū)間;

2)令,且函數(shù)有三個彼此不相等的零點,其中.

①若,求函數(shù)處的切線方程;

②若對,恒成立,求實數(shù)的取值范圍.

【答案】1,;(2)①;②

【解析】

1)求出導函數(shù),由確定增區(qū)間;

2)由的根是,可得是方程的兩實根,故,且由判別式得

①由已知,可解得.然后可由導數(shù)幾何意義求得切線方程;

②若對任意的,都有成立,所以,由的零點可得函數(shù)的性質(單調性,函數(shù)值的正負).由可得,因此可分類:時,的最大值為0,當時,上有極大值點也是最大值點,利用極值點導數(shù)值為0可得極值點的關系,把它代入可得的范圍,再由的范圍可求得的取值范圍.綜合以上分析可得結論.

1,所以

,得

所以的增區(qū)間是,

2,由方程,得是方程的兩實根,故,且由判別式得

①若,則,故由

,,,,

所以所求切線方程為,即

②若對任意的,都有成立,所以.因為,所以.

時,對,,所以,解得.又因為,得,則有;

時,,則存在的極大值點,且.

由題意得,將代入得,進而得到,得.又因為,得.

綜上可知的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱底面直角梯形,,,是棱上一點,,,,.

(1)求異面直線所成的角;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下說法:

①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;

②設有一個回歸方程,變量增加1個單位時,平均增加5個單位

③線性回歸方程必過

④設具有相關關系的兩個變量的相關系數(shù)為,那么越接近于0,之間的線性相關程度越高;

⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯(lián)的把握就越大。

其中錯誤的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x),若對于tR,f(t)≤kt恒成立,則實數(shù)k的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,判斷函數(shù)的單調性并說明理由;

2)若,求證:關的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“不忘初心、牢記使命”主題教育活動正在全國開展,某區(qū)政府為統(tǒng)計全區(qū)黨員干部一周參與主題教育活動的時間,從全區(qū)的黨員干部中隨機抽取n名,獲得了他們一周參加主題教育活動的時間(單位:時)的頻率分布直方圖,如圖所示,已知參加主題教育活動的時間在內的人數(shù)為92.

1)估計這些黨員干部一周參與主題教育活動的時間的平均值;

2)用頻率估計概率,如果計劃對全區(qū)一周參與主題教育活動的時間在內的黨員干部給予獎勵,且參與時間在內的分別獲二等獎和一等獎,通過分層抽樣方法從這些獲獎人中隨機抽取5人,再從這5人中任意選取3人,求3人均獲二等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是自然對數(shù)的底數(shù),已知函數(shù),.

1)求函數(shù)的最小值;

2)函數(shù)上能否恰有兩個零點?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐SABCD的底面是正方形,SD⊥平面ABCD,SDADa,ESD上的點,且DEa(0<≦1). w.w.w..c.o.m

(Ⅰ)求證:對任意的0、1),都有AC⊥BE:

(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

同步練習冊答案