如圖,ABCD—A1B1C1D1是正方體,B1E1=D1F1,則BE1與DF1所成角的余弦值是(    )

A.                          B.

C.                           D.

 

【答案】

A

【解析】

試題分析:取M=,則由正方體的性質(zhì)可得M 與  平行且相等.

再取AB的中點N,則由M∥AN 且 M=AN,可得MAN 為平行四邊形,AM∥N,且AM=N.∠BN為B與D所成的角.

設(shè)正方體的棱長為1,△BN中,NB=、N= = =B

由余弦定理可得cos∠BN=,故選A。

考點:本題主要考查正方體的幾何性質(zhì)及異面直線所成角的求法。

點評:根據(jù)題目特點,可靈活采用不同方法,這里運(yùn)用幾何方法,使問題得解,體現(xiàn)解題的靈活性。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
①②④
①②④
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2
;
⑤過點A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是
①②
①②
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1;
③過點A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD—A1B1C1D1中,點O是B1D1的中點,直線A1C交平面AB1D1于點M,對下列結(jié)論,錯誤的是(    )

A.A、M、O三點共線                      B.A、M、O、A1四點共面

C.A、O、C、M四點共面                 D.B、B1、O、M四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省江門市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案