【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

【答案】A
【解析】解:由題意可得出,此三次函數(shù)在x=±5處的導(dǎo)數(shù)為0,依次特征尋找正確選項:
A選項,導(dǎo)數(shù)為 ,令其為0,解得x=±5,故A正確;
B選項,導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故B錯誤;
C選項,導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故C錯誤;
D選項,導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故D錯誤.
故選:A.
分別求出四個選項中的導(dǎo)數(shù),驗證在x=±5處的導(dǎo)數(shù)為0成立與否,即可得出函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(1﹣ )的定義域為[1,+∞),則函數(shù)y= 的定義域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA1

(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點P是曲線y=x3 x+ 上的任意一點,點P處的切線傾斜角為α,則α的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+alnx(a∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)﹣2x+2x2 , 討論函數(shù)g(x)的單調(diào)性;
(3)若(2)中函數(shù)g(x)有兩個極值點x1 , x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】F1,F2是雙曲線的兩個焦點

(1)若雙曲線上一點M到左焦點F1的距離等于7,求點M到右焦點F2的距離;

(2)若P是雙曲線左支上的點,且|PF1|·|PF2|=32,試求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的菱形, .

(1)求證:平面平面

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的極值;

(Ⅱ)討論的單調(diào)性;

(Ⅲ)若對任意的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案