【題目】如圖1,在邊長(zhǎng)為2的菱形中,
,
于點(diǎn)
,將
沿
折起到
的位置,使
,如圖2.
(1)求證:平面
;
(2)在線段上是否存在點(diǎn)
,使平面
平面
?若存在,求
的值;若不存在,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)存在,且
【解析】
(1),
,由線面垂直的判定定理得到
平面
,從而有
,又
,再由線面垂直的判定定理證明。
(2)假設(shè)在線段上是否存在點(diǎn)
,使平面
平面
,根據(jù)(1)建立空間直角坐標(biāo)系,設(shè)
,則
,所以
,若使平面
平面
,分別求得兩個(gè)平面的法向量,再通過(guò)兩個(gè)法向量數(shù)量積為零求解.
(1)證明:因?yàn)?/span>于點(diǎn)
,
所以,
,
,且
,
平面
,
,
平面
.
(2)假設(shè)在線段上是否存在點(diǎn)
,使平面
平面
.
根據(jù)(1)建立如圖所示空間直角坐標(biāo)系:
則,
,
設(shè),
則,所以
,
所以,
設(shè)平面一個(gè)法向量為:
,
則,即
,
令,所以
,
設(shè)平面一個(gè)法向量為:
,
則,即
,
令,所以
,
因?yàn)槠矫?/span>平面
,
所以,即
解得.
所以在線段上是否存在點(diǎn)
,使平面
平面
,且
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列對(duì)任意
滿足
,下面給出關(guān)于數(shù)列
的四個(gè)命題:①
可以是等差數(shù)列,②
可以是等比數(shù)列;③
可以既是等差又是等比數(shù)列;④
可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是邊長(zhǎng)為3的正方形,
平面
,
,
,BE與平面
所成角為
.
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)M在線段BD上,且平面BEF,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,
.
(1)當(dāng)時(shí),若對(duì)任意
均有
成立,求實(shí)數(shù)
的取值范圍;
(2)設(shè)直線與曲線
和曲線
相切,切點(diǎn)分別為
,
,其中
.
①求證:;
②當(dāng)時(shí),關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是直角梯形,側(cè)棱
底面
垂直于
和
,
是棱
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在一點(diǎn)
使得
與平面
所成角的正弦值為
若存在,請(qǐng)求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx-1,當(dāng)x=-2時(shí)有極值,且在x=-1處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線
,動(dòng)圓P與圓M相外切,且與直線l相切.設(shè)動(dòng)圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點(diǎn)A,B是E上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為
,上頂點(diǎn)為
,右焦點(diǎn)為
,離心率為
,
的面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若為
軸上的兩個(gè)動(dòng)點(diǎn),且
,直線
和
分別與橢圓
交于
兩點(diǎn).
(�。┣�的面積最小值;
(ⅱ)證明:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面
為正方形,
平面
,
,點(diǎn)
分別為
的中點(diǎn).
(1)求證: ;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com