13.設(shè)定義在R上的函數(shù)f(x)是最小正周期為$\frac{π}{2}$的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)$x∈[0,\frac{π}{2}]$時(shí),0<f(x)<1,當(dāng)x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$時(shí),(x-$\frac{π}{4}$)f'(x)<0,則方程f(x)=cos2x在[-2π,2π]上的根的個(gè)數(shù)為8.

分析 以$\frac{π}{4}$分界點(diǎn)進(jìn)行討論,確定函數(shù)的單調(diào)性,利用函數(shù)的圖形,畫(huà)出草圖進(jìn)行求解,即可得到結(jié)果

解答 解:∵當(dāng)x∈[0,$\frac{π}{2}$]時(shí),0<f(x)<1,f(x)為偶函數(shù),
當(dāng)x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$時(shí),(x-$\frac{π}{4}$)f'(x)<0,
∴x∈[0,$\frac{π}{4}$]時(shí),f(x)為單調(diào)增函數(shù);x∈[$\frac{π}{4}$,$\frac{π}{2}$]時(shí),f(x)為單調(diào)減函數(shù),
在同一坐標(biāo)系中作出y=cos2x和y=f(x)草圖象如下,

由圖知f(x)=cos2x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為8個(gè).
故答案為8.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查函數(shù)的周期性與奇偶性,利用數(shù)形結(jié)合的思想來(lái)求解,會(huì)化難為易.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.等差數(shù)列{an}中,S3=$\frac{3}{5}$,S5=$\frac{5}{3}$,則S8=$\frac{64}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓Γ:$\frac{{x}^{2}}{4}$+y2=1的左頂點(diǎn)為R,點(diǎn)A(2,1),B(-2,1),O為坐標(biāo)原點(diǎn).
(I)若P是橢圓Γ上任意一點(diǎn),$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)設(shè)Q是橢圓Γ上任意一點(diǎn),S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范圍;
(Ⅲ)設(shè)M(x1,y1),N(x2,y2)是橢圓Γ上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足kOM•kON=kOA•kOB,試探究△OMN的面積是否為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(1)求證:PA∥平面BOD.
(2)求異面直線(xiàn)PA與BD所成角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(理)宜黃高速公路連接宜昌、武漢、黃石三市,全長(zhǎng)約350公里,是湖北省大三角經(jīng)濟(jì)主骨架的干線(xiàn)公路之一.若某汽車(chē)從進(jìn)入該高速公路后以不低于60千米/時(shí)且不高于120千米/時(shí)的速度勻速行駛,已知該汽車(chē)每小時(shí)的運(yùn)輸成本由固定部分和可變部分組成,固定部分為200元,可變部分與速度v(千米/時(shí))的平方成正比(比例系數(shù)記為k).當(dāng)汽車(chē)以最快速度行駛時(shí),每小時(shí)的運(yùn)輸成本為488元.若使汽車(chē)的全程運(yùn)輸成本最低,其速度為100千米/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=a2-x+2(a>0,a≠1)的圖象恒過(guò)一定點(diǎn)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,A,B,C所對(duì)的邊分別是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,則$\frac{c}$的值為( 。
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|a-1<x<2a+1},B={x|0<x<3}.
(1)若a=2,求A∪B;
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案