【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,

甲:我不坐座位號(hào)為的座位;

乙:我不坐座位號(hào)為的座位;

丙:我的要求和乙一樣;

。喝绻也蛔惶(hào)為的座位,我就不坐座位號(hào)為的座位.

那么坐在座位號(hào)為的座位上的是( )

A. B. C. D.

【答案】C

【解析】

對(duì)甲分別坐座位號(hào)為3或4分類(lèi)推理即可判斷。

當(dāng)甲坐座位號(hào)為3時(shí),

因?yàn)橐也蛔惶?hào)為1和4的座位

所以乙只能坐座位號(hào)為2,這時(shí)只剩下座位號(hào)為1和4

又丙的要求和乙一樣,矛盾,故甲不能坐座位號(hào)3.

當(dāng)甲坐座位號(hào)為4時(shí),

因?yàn)橐也蛔惶?hào)為1和4的座位,丙的要求和乙一樣:

所以丁只能坐座位號(hào)1,

又如果乙不坐座位號(hào)為2的座位,丁就不坐座位號(hào)為1的座位.

所以乙只能坐座位號(hào)2,這時(shí)只剩下座位號(hào)3給丙。

所以坐在座位號(hào)為3的座位上的是丙.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新能源汽車(chē)的春天來(lái)了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車(chē)車(chē)輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自2018年1月1日至2020年12月31日,對(duì)購(gòu)置的新能源汽車(chē)免征車(chē)輛購(gòu)置稅.某人計(jì)劃于2018年5月購(gòu)買(mǎi)一輛某品牌新能源汽車(chē),他從當(dāng)?shù)卦撈放其N(xiāo)售網(wǎng)站了解到近五個(gè)月實(shí)際銷(xiāo)量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號(hào)t

1

2

3

4

5

銷(xiāo)量(萬(wàn)輛)

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析,可用線(xiàn)性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌?chē)實(shí)際銷(xiāo)量(萬(wàn)輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌?chē)的銷(xiāo)量;

(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車(chē)的最大續(xù)航里程(新能源汽車(chē)的最大續(xù)航里程是指理論上新能源汽車(chē)所裝的燃料或電池所能夠提供給車(chē)跑的最遠(yuǎn)里程)對(duì)購(gòu)車(chē)補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車(chē)補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買(mǎi)新能源汽車(chē)的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①回歸方程,其中,,②,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷(xiāo)售公司擬招聘一名產(chǎn)品推銷(xiāo)員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷(xiāo)售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷(xiāo)售量不超過(guò)300件,沒(méi)有提成,超過(guò)300件的部分每件提成30元.

(1)分別寫(xiě)出兩種方案中推銷(xiāo)員的月工資(單位:元)與月銷(xiāo)售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷(xiāo)售公司隨機(jī)選取一名推銷(xiāo)員,對(duì)他(或她)過(guò)去兩年的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:

月銷(xiāo)售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷(xiāo)員的月工資超過(guò)11090元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),直線(xiàn)軸交于點(diǎn),且直線(xiàn)恰好平分.

1)求的值;

2)設(shè)是直線(xiàn)上一點(diǎn),直線(xiàn)交拋物線(xiàn)于另一點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù).

1)求實(shí)數(shù)的值,并畫(huà)出函數(shù)的圖象;

2)若函數(shù)在區(qū)間上是增函數(shù),結(jié)合函數(shù)的圖象,求實(shí)數(shù)的取值范圍;

3)結(jié)合圖象,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)求已知曲線(xiàn)和曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),圓.

(1)若拋物線(xiàn)的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求

(2)若直線(xiàn)與拋物線(xiàn)和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的右頂點(diǎn)到其一條漸近線(xiàn)的距離等于,拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的右焦點(diǎn)重合,則拋物線(xiàn)上的動(dòng)點(diǎn)到直線(xiàn)距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案