若函數(shù)y=f(x)是周期為2的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x-1.在y=f(x)的圖象上有兩點(diǎn)A、B,它們的縱坐標(biāo)相等,橫坐標(biāo)都在區(qū)間[1,3]上,定點(diǎn)C的坐標(biāo)為(0,a)(其中2<a<3),
(1) 求當(dāng)x∈[1,2]時(shí),f(x)的解析式;
(2) 定點(diǎn)C的坐標(biāo)為(0,a)(其中2<a<3),求△ABC面積的最大值.
(1) f(x)=-x+3,(2) 當(dāng)t=時(shí),S最大值=
(1)∵f(x)是以2為周期的周期函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x-1,
∴當(dāng)x∈[0,1]時(shí),f(x)=f(x+2)=(x+2)-1=x+1. …………1分
∵f(x)是偶函數(shù),∴當(dāng)x∈[-1,0]時(shí),f(x)=f(-x)=-x+1, …………2分
當(dāng)x∈[1,2]時(shí),f(x)=f(x-2)=-(x-2)+1=-x+3. …………4分
(2)設(shè)A、B的橫坐標(biāo)分別為3-t,t+1,1≤t≤2,則|AB|=(t+1)-(3-t)=2t-2, …………6分
∴△ABC的面積為S=(2t-2)·(a-t)=-t2+(a+1)t-a(1≤t≤2)=-(t-)2+
∵2<a<3,∴<<2.當(dāng)t=時(shí),S最大值=…………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.若f(x)=f-1(x),則函數(shù)y=f(x)的圖象關(guān)于y=x對稱
B.函數(shù)y=f(x)的圖象與直線y=x相交,則交點(diǎn)一定在它的反函數(shù)的圖象上
C.若函數(shù)y=f(x)是(-∞,+∞)上的減函數(shù),則其反函數(shù)y=f -1(x)也是(-∞,+∞)上的減函數(shù)
D.函數(shù)值域中的每一個(gè)值都有原象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年遼寧盤錦二中高二下學(xué)期第二次階段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)、若函數(shù)y=f(x)是周期為2的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x-1.在y=f(x)的圖象上有兩點(diǎn)A、B,它們的縱坐標(biāo)相等,橫坐標(biāo)都在區(qū)間[1,3]上,
(1) 求當(dāng)x∈[1,2]時(shí),f(x)的解析式;
(2) 定點(diǎn)C的坐標(biāo)為(0,a)(其中2<a<3),求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年綏濱一中高二下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
若函數(shù)y=f(x)是周期為2的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x-1,在y=f(x)的圖象上有兩點(diǎn)A、B,它們的縱坐標(biāo)相等,橫坐標(biāo)都在區(qū)間[1,3]上,定點(diǎn)C的坐標(biāo)為(0,a)(其中2<a<3),求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com