19.求數(shù)列1,1+a,1+a+a2,…,1+a+a2+…+an-1,…的前n項和Sn(其中a≠0).

分析 先通過對a=1與a≠1的討論分別利用公式法求解數(shù)列的通項,進(jìn)而即可求出數(shù)列的和.

解答 解:當(dāng)a=1時,數(shù)列的通項公式an=1+a+a2+…+an-1=n,
則Sn=a1+a2+…+an=1+2+…+n=$\frac{1}{2}n(n+1)$;
當(dāng)a≠1時,有an=1+a+a2+…+an-1=$\frac{1(1-{a}^{n})}{1-a}=\frac{1}{1-a}+\frac{1}{a-1}•{a}^{n}$
Sn=a1+a2+…+an
=($\frac{1}{1-a}$+$\frac{1}{a-1}$•a)+($\frac{1}{1-a}$+$\frac{1}{a-1}$•a2)+…+($\frac{1}{1-a}$+$\frac{1}{a-1}$•an
=n×$\frac{1}{1-a}$+$\frac{1}{a-1}$(a+a2+…+an),
=$\frac{n}{1-a}$+$\frac{1}{a-1}$•$\frac{a(1-{a}^{n})}{1-a}$
=$\frac{{a}^{n+1}-a}{(1-a)^{2}}+\frac{n}{1-a}$.
故當(dāng)a=1時,數(shù)列的前n項和Sn=$\frac{1}{2}n(n+1)$;
當(dāng)a≠1時,Sn=$\frac{{a}^{n+1}-a}{(1-a)^{2}}+\frac{n}{1-a}$.

點(diǎn)評 本題考查等差數(shù)列以及等比數(shù)列的前n項和公式,分類討論思想的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線ax+4y+2=0與直線2x+5y+b=0互相垂直,且垂足為(1,c)則a+b+c的值為( 。
A.-1B.20C.0D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2x2+ex(x<0)與g(x)=2x2+ln(x+m)+2的圖象上存在關(guān)于y軸對稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,e)B.(-∞,$\frac{1}{e}$)C.($\frac{1}{e}$,e)D.(-$\frac{1}{e}$,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式2x-1>m(x2-1),是否存在實(shí)數(shù)m,使不等式對任意x∈R恒成立?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=3x2-3,g(x)=${∫}_{0}^{x}$f(t)dt(x>0).
(1)求g(x)的最小值;
(2)求由f(x),g(x),x=1,x=2所成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合P={x|$\frac{1}{2}≤x≤2$},函數(shù)f(x)=log2(ax2-2x+2)的定義域?yàn)镼,若P⊆Q,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知兩個等差數(shù)列{an}和{bn}的前n項和分別為An和Bn,若$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{5}}{_{5}}$=$\frac{21}{26}$,$\frac{{a}_{3}}{_{5}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+1,g(x)=x+1.
(1)求f(2)+f(一2)的值;
(2)求f(x+1);
(3)f[g(x)]和g[f(x)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(1,1),$\overrightarrow$=(0,-2),當(dāng)k為何值時:
(1)k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$共線;
(2)k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$的夾角為120°;
(3)k$\overrightarrow{a}$-$\overrightarrow$的模等于$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊答案