(2009四川卷理)如圖,在半徑為3的球面上有三點,,球心到平面的距離是,則兩點的球面距離是

A.            B.           C.          D.        

【考點定位】本小題考查球的截面圓性質(zhì)、球面距,基礎題。(同文9)

解析:由知截面圓的半徑

,故,所以兩點的球面距離為,故選擇B。

解析2:過球心作平面的垂線交平面與,,則在直線上,由于,,所以,由為等腰直角三角形可得,所以為等邊三角形,則兩點的球面距離是。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009四川卷理)如圖,已知正三棱柱的各條棱長都相等,是側(cè)   棱的中點,則異面直線所成的角的大小是                  。       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009四川卷理)如圖,在半徑為3的球面上有三點,,球心到平面的距離是,則兩點的球面距離是

A.            B.           C.          D.        

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009四川卷理)已知雙曲線的左右焦點分別為,其一條漸近線方程為,點在該雙曲線上,則=

A.          B.          C .0            D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009四川卷理)已知直線和直線,拋物線上一動點到直線和直線的距離之和的最小值是

A.2             B.3             C.           D.

查看答案和解析>>

同步練習冊答案