設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且
(1)求角A的大;
(2)若角,BC邊上的中線AM的長(zhǎng)為,求△ABC的面積.
【答案】分析:(1)利用正弦定理把中的邊換成角的正弦,進(jìn)而利用兩角和公式進(jìn)行化簡(jiǎn)整理求得cosA,進(jìn)而求得A.
(2)由(1)知,進(jìn)而可知三角形為等腰三角形和C的值,設(shè)AC=x,進(jìn)而用余弦定理建立等式求得x,進(jìn)而用三角形面積公式求得答案.
解答:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124419385193160/SYS201310251244193851931017_DA/2.png">,
所以,
,
所以,于是
(2)由(1)知,
所以AC=BC,
設(shè)AC=x,則

在△AMC中由余弦定理得AC2+MC2-2AC•MCcosC=AM2,

解得x=2,

點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.在解三角形問題中,常需要用正弦定理和余弦定理完成邊角互化,來解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長(zhǎng);
(2)若直線l:
x
a
+
y
b
=1
恒過點(diǎn)D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案