【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩坐標(biāo)系取相同的單位長(zhǎng)度,曲線(xiàn)C2的極坐標(biāo)方程為ρ=﹣2sin(θ+ ).
(1)把曲線(xiàn)C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求曲線(xiàn)C1與C2的交點(diǎn)M(ρ1 , θ1)的極坐標(biāo),其中ρ1≤0,0≤θ1<2π.
【答案】
(1)解:曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),可得x=2(cosθ+1)﹣1=2cosθ+1,
∴(x﹣1)2+y2=4(cos2θ+sin2θ)=4,可得普通方程為:(x﹣1)2+y2=4,展開(kāi)為:x2+y2﹣2x﹣3=0,
把x=ρcosθ,y=ρsinθ代入上述方程可得極坐標(biāo)方程:ρ2﹣2ρcosθ﹣3=0
(2)解:由曲線(xiàn)C2的極坐標(biāo)方程:ρ=﹣2sin(θ+ ),展開(kāi)可得: sinθ=0,即ρ2+ρcosθ+ sinθ=0,
化為直角坐標(biāo)方程為:x2+y2+x+ y=0,聯(lián)立 ,解得 ,或 .
∴曲線(xiàn)C1與C2的交點(diǎn)的直角坐標(biāo)為 ,或(﹣1,0).
化為極坐標(biāo)為: ,或(﹣1,0)
【解析】(1)由曲線(xiàn)C1的參數(shù)方程,可得x=2(cosθ+1)﹣1=2cosθ+1,利用同角三角函數(shù)平方關(guān)系可得普通方程為:(x﹣1)2+y2=4,展開(kāi)把x=ρcosθ,y=ρsinθ代入上述方程可得極坐標(biāo)方程.(2)由曲線(xiàn)C2的極坐標(biāo)方程:ρ=﹣2sin(θ+ ),展開(kāi)可得: sinθ=0,即ρ2+ρcosθ+ sinθ=0,利用ρ2=x2+y2 , x=ρcosθ,y=ρsinθ即可化為直角坐標(biāo)方程,聯(lián)立解得交點(diǎn),化為極坐標(biāo)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,點(diǎn)(0,)是橢圓與y軸的一個(gè)交點(diǎn).
(1)求橢圓C的方程;
(2)直線(xiàn)x=2與橢圓交于P,Q兩點(diǎn),點(diǎn)P位于第一象限,A,B是橢圓上位于直線(xiàn)x=2兩側(cè)的動(dòng)點(diǎn);
①若直線(xiàn)AB的斜率為,求四邊形APBQ面積的取值范圍;
②當(dāng)點(diǎn)A,B在橢圓上運(yùn)動(dòng),且滿(mǎn)足∠APQ=∠BPQ時(shí),直線(xiàn)AB的斜率是否為定值?若是,求出此定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點(diǎn),F為其右焦點(diǎn),2是|AF|與|FB|的等差中項(xiàng),是|AF|與|FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A,B的任一動(dòng)點(diǎn),過(guò)點(diǎn)A作直線(xiàn)l⊥x軸.以線(xiàn)段AF為直徑的圓交直線(xiàn)AP于點(diǎn)A,M,連接FM交直線(xiàn)l于點(diǎn)Q.
(1)求橢圓C的方程;
(2)試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)N,使得直線(xiàn)PQ必過(guò)該定點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若,使 成立,則稱(chēng)為函數(shù)的一個(gè)“生成點(diǎn)”,則函數(shù)的“生成點(diǎn)”共有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1;
(2)求直線(xiàn)BC1與平面ADD1A1所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)在在(1)的條件下,判斷函數(shù)與函數(shù)的圖像公共點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)當(dāng)時(shí),函數(shù)的圖象始終在函數(shù)的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a>b,a=5,c=6,sinB= .
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四面體ABCD中,AB,BC,CD兩兩互相垂直,且BC=CD=1.
(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com