【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若恒成立,求實數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為和,無單調(diào)遞減區(qū)間;(2).
【解析】
(1)化簡,求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)設(shè),則,對求導(dǎo),分類討論,分別判斷的單調(diào)性,根據(jù)單調(diào)性求導(dǎo)的最值,驗證是否合題意即可
(1)因為(且),所以.
設(shè),則.
當(dāng)時,,是增函數(shù),,所以.
故在上為增函數(shù);
當(dāng)時,,是減函數(shù),,所以,所以在上為增函數(shù).
故的單調(diào)遞增區(qū)間為和,無單調(diào)遞減區(qū)間.
(2)設(shè),則.
已知條件即為當(dāng)時.
因為為增函數(shù),所以當(dāng)時,.
①當(dāng)時,,當(dāng)且僅當(dāng),且時等號成立.
所以在上為增函數(shù).
因此,當(dāng)時,.
所以滿足題意.
②當(dāng)時,由,得,解得.
因為,所,所以.
當(dāng)時,,因此在上為減函數(shù).
所以當(dāng)時,,不合題意.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購是當(dāng)前民眾購物的新方式,某公司為改進(jìn)營銷方式,隨機調(diào)査了100名市民,統(tǒng)計其周平均網(wǎng)購
的次數(shù),并整理得到如右的頻數(shù)直方圖,將周平均網(wǎng)購次數(shù)不小于4次的民眾稱為網(wǎng)購迷.這100名市民中,年齡不超過40歲的有65人,且網(wǎng)購迷中有5名市民的年齡超過40歲
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提條件下認(rèn)為網(wǎng)購迷與年齡不超過40歲有關(guān)?
(2)現(xiàn)從網(wǎng)購迷中按分層抽樣選5人代表進(jìn)一步進(jìn)行調(diào)查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過40歲的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個零點,求k的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點且關(guān)于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當(dāng)四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形,平面平面,且.
(1)證明:平面平面;
(2)當(dāng),且與平面所成角的正切值為時,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗員隨機抽取了100件鋼管作為樣本進(jìn)行檢測,將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測結(jié)果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計 | 100 | 1 |
(1)求,;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或為合格等級,鋼管尺寸在為優(yōu)秀等級,鋼管的檢測費用為0.5元/根.
(i)若從和的5件樣品中隨機抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對該批剩余鋼管不再進(jìn)行檢測,所有鋼管均以45元/根售出;
②對該批剩余鋼管一一進(jìn)行檢測,不合格產(chǎn)品不銷售,合格等級的鋼管50元/根,優(yōu)等鋼管60元/根.
請你為該企業(yè)選擇最好的銷售方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省2019年公布了新的高考方案,實行“3+1+2”模式.某學(xué)生按方案要求任意選擇,則該生選擇考?xì)v史和化學(xué)的概率為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com