已知函數(shù)f(x)(x∈R,且x>0),對(duì)于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時(shí),f(x)>0恒成立.
(1)求f(1);   
(2)證明方程f(x)=0有且僅有一個(gè)實(shí)根;
(3)若x∈[1,+∞)時(shí),不等式f(
x2+2x+a
x
)>0恒成立,求實(shí)數(shù)a的取值范圍.
(1)∵定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),
令x=y=1,
∴f(1)=2f(1),
∴f(1)=0;(2分)
證明:(2)任取0<x1<x2,則
x2
x1
>1,則題意得f(
x2
x1
)>0
又定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),∴f(xy)-f(y)=f(x),
∴f(x2)-f(x1)=f(
x2
x1
)>0
∴f(x2)>f(x1
∴函數(shù)f(x)在其定義域內(nèi)為增函數(shù),由(1)和f(1)=0,
所以1為方程f(x)=0的一個(gè)實(shí)根,若還存在一個(gè)x0,且x0>0,使得f(x0)=0,
因?yàn)楹瘮?shù)f(x)在其定義域內(nèi)為增函數(shù),必有x0=1,故方程f(x)=0有且僅有一個(gè)實(shí)根;(8分)
(3)由(2)知函數(shù)f(x)在其定義域內(nèi)為增函數(shù)
當(dāng)x∈[1,+∞)時(shí),不等式f(
x2+2x+a
x
)>0=f(1)恒成立,即
x2+2x+a
x
>1恒成立
即x2+2x+a>x,即a>-x2-x在x∈[1,+∞)時(shí)恒成立
∵-x2-x在x∈[1,+∞)時(shí)最大值為-2
∴a>-2(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于一切實(shí)數(shù)x滿(mǎn)足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時(shí),f(x)=(x-2)2,求當(dāng)x∈[16,20]時(shí),函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市西南師大附中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=log2(x+1),當(dāng)點(diǎn) (x,y) 是函數(shù)y=f (x) 圖象上的點(diǎn)時(shí),點(diǎn)是函數(shù)y=g(x) 圖象上的點(diǎn).
(1)寫(xiě)出函數(shù)y=g (x) 的表達(dá)式;
(2)當(dāng)g(x)-f (x)≥0時(shí),求x的取值范圍;
(3)當(dāng)x在 (2)所給范圍內(nèi)取值時(shí),求g(x)-f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫(xiě)出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線(xiàn)上存在兩個(gè)不同點(diǎn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求出其坐標(biāo);若曲線(xiàn)(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):2.10 函數(shù)的最值(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于一切實(shí)數(shù)x滿(mǎn)足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時(shí),f(x)=(x-2)2,求當(dāng)x∈[16,20]時(shí),函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案