分析 由函數(shù)f(x)=x2+ax+2b的一個(gè)零點(diǎn)在(0,1)內(nèi),另一個(gè)零點(diǎn)在(1,2)內(nèi)可得關(guān)于a,b的不等式組.
(1)直接由不等式組畫出點(diǎn)(a,b)構(gòu)成的平面區(qū)域;
(2)令z=a+b得到線性目標(biāo)函數(shù),化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:∵函數(shù)f(x)=x2+ax+2b的一個(gè)零點(diǎn)在(0,1)內(nèi),另一個(gè)零點(diǎn)在(1,2)內(nèi),
∴$\left\{\begin{array}{l}{f(0)=2b>0}\\{f(1)=1+a+2b<0}\\{f(2)=4+2a+2b>0}\end{array}\right.$,即$\left\{\begin{array}{l}{b>0}\\{a+2b+1<0}\\{a+b+2>0}\end{array}\right.$.
(1)由約束條件作出可行域如圖:
(2)令z=a+b,化為直線方程的斜截式b=-a+z,
A(-1,0),
聯(lián)立$\left\{\begin{array}{l}{a+2b+1=0}\\{a+b+2=0}\end{array}\right.$,解得B(-3,1),
由圖可知,當(dāng)直線b=-a+z過A時(shí),直線在b軸上的截距最大,z有最大值為-1;
當(dāng)直線b=-a+z過B時(shí),直線在b軸上的截距最小,z有最小值為-3+1=-2.
∴a+b的范圍為[-2,-1].
點(diǎn)評(píng) 本題考查一元二次方程根的分布,考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$sin($\frac{5π}{12}$+x) | B. | 2$\sqrt{2}$sin(x-$\frac{5π}{12}$) | C. | 2$\sqrt{2}$sin($\frac{7π}{12}$+x) | D. | 2$\sqrt{2}$sin(x-$\frac{7π}{12}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 既是奇函數(shù)又是偶函數(shù) | ||
C. | 偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com