若實(shí)數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.
(1)∵h(yuǎn)(x)=f(x)-g(x)=-2ax3-3ax2+12ax-2
∴h'(x)=-6ax2-6ax+12a=-6a(x+2)(x-1)
令h'(x)=0,∴x=-2或x=1
若a>0,當(dāng)x>-2時(shí),h'(x)>0;當(dāng)x<-2時(shí),h'(x)<0
∴x=-2是函數(shù)h(x)的極小值點(diǎn),極小值為h(-2)=-20a-2;
當(dāng)x>1時(shí),h'(x)<0;當(dāng)x<1時(shí),h'(x)>0
∴x=1是函數(shù)h(x)的極大值點(diǎn),極大值為h(1)=7a-2
若a<0,易知,x=-2是函數(shù)h(x)的極大值點(diǎn),極大值為h(-2)=-20a-2;x=1是函數(shù)h(x)的極小值點(diǎn),
極小值為h(1)=7a-2
(2)若在(0,+∞)上至少存在一點(diǎn)x0使得f(x0)>g(x0)成立,
則f(x)>g(x)在(0,+∞)上至少存在一解,即h(x)>0在(0,+∞)上至少存在一解
由(1)知,當(dāng)a<0時(shí),函數(shù)h(x)在區(qū)間(0,+∞)上遞增,且極小值為h(1)=7a-2<0
∴此時(shí)h(x)>0在(0,+∞)上至少存在一解;
當(dāng)a>0時(shí),函數(shù)h(x)在區(qū)間(0,1)上遞增,在(1,+∞)上遞減,
∴要滿足條件應(yīng)有函數(shù)h(x)的極大值h(1)=7a-2>0,即a>
2
7

綜上,實(shí)數(shù)a的取值范圍為a<0或a>
2
7
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若實(shí)數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州高級中學(xué)高三第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

若實(shí)數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年陜西省西安市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

若實(shí)數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案