【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是

【答案】(﹣∞,4)
【解析】解:依題意,即在定義域內(nèi),f(x)不是單調(diào)的.
分情況討論:
①x≤2時,f(x)=﹣x2+ax不是單調(diào)的,對稱軸為x= ,則 <2,∴a<4
②x>2時,若f(x)是單調(diào)的,此時a≥4,此時,當(dāng)x>2時 f(x)=ax﹣4為單調(diào)遞增,因此函數(shù)f(x)在R不單調(diào),不滿足條件.
綜合得:a的取值范圍是(﹣∞,4)
所以答案是:(﹣∞,4)
【考點精析】關(guān)于本題考查的函數(shù)單調(diào)性的性質(zhì),需要了解函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于 兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程 =1所表示的圖形是焦點在y軸上的雙曲線,命題q:復(fù)數(shù)z=(m﹣3)+(m﹣1)i對應(yīng)的點在第二象限,又p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風(fēng)悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:

做不到“光盤”

能做到“光盤”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=kx2+2kx+1在[﹣3,2]上的最大值為5,則k的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點在x軸上的橢圓C 經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k0)的直線l交橢圓CA,B兩點(Ax軸下方).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;

(3)記直線ly軸的交點為P.若,求直線l的斜率k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時 ,若f(x)≥a+1對一切 x≥0成立,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=(a2﹣3a+3)ax是指數(shù)函數(shù),試確定函數(shù)y=loga(x+1)在區(qū)間(0,3)上的值域.

查看答案和解析>>

同步練習(xí)冊答案