已知首項(xiàng)為的等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明Sn+≤(n∈N*).
(1)設(shè)等比數(shù)列{an}的公比為q,由-2S2,S3,4S4成等差數(shù)列,所以S3+2S2=4S4-S3,S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比數(shù)列{an}的通項(xiàng)公式為an=×=(-1)n-1·.
(2)Sn=1-,Sn+=1-+=
當(dāng)n為奇數(shù)時(shí),Sn+隨n的增大而減小,所以Sn+≤S1+=.
當(dāng)n為偶數(shù)時(shí),Sn+隨n的增大而減小,所以Sn+≤S2+=.
故對(duì)于n∈N*,有Sn+≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川綿陽(yáng)高中高三第二次診斷性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知首項(xiàng)為的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若,數(shù)列{bn}的前n項(xiàng)和Tn,求滿(mǎn)足不等式≥的最大n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川綿陽(yáng)高中高三第二次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知首項(xiàng)為的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年天津市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題
已知首項(xiàng)為的等比數(shù)列的前n項(xiàng)和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com