(1)因為
>0,解之得x<-b或x>b,
∴函數(shù)的定義域為(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定義域是關(guān)于原點對稱的區(qū)間
f(-x)=log
a=log
a,
∵-f(x)=log
a()
-1=log
a,
∴f(-x)=-f(x),可得f(x)為奇函數(shù).…(6分)
(3)證明:設(shè)b<x
1<x
2,則
f(x
1)-f(x
2)=log
a,
∵
-1=
>0
∴當(dāng)a>1時,f(x
1)-f(x
2)>0,可得f(x
1)>f(x
2),f(x)在(b,+∞)上為減函數(shù);
當(dāng)0<a<1時,f(x
1)-f(x
2)<0,可得f(x
1)<f(x
2),f(x)在(b,+∞)上為增函數(shù).
同理可得:當(dāng)a>1時,f(x)在(-∞,-b)上為減函數(shù);當(dāng)0<a<1時,f(x)在(-∞,-b)上為增函數(shù).
綜上所述,當(dāng)a>1時,f(x)在(-∞,-b)和(b,+∞)上為減函數(shù);當(dāng)0<a<1時,f(x)在(-∞,-b)和(b,+∞)上為增函數(shù).…(12分)