18.設(shè)偶函數(shù)f(x)在(-∞,0)上是減函數(shù),則f(-8)<f(9).(比較大。

分析 偶函數(shù)f(x)在(-∞,0)上是減函數(shù),f(-8)<f(-9)=f(9),即可得出結(jié)論.

解答 解:∵偶函數(shù)f(x)在(-∞,0)上是減函數(shù),
∴f(-8)<f(-9)=f(9),
故答案為:<.

點(diǎn)評 本題考查函數(shù)的奇偶性與單調(diào)性,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求(x-$\frac{1}{x}$)2n展開式的中間項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}是等差數(shù)列,且滿足a1+a2+a3=6,a5=5;數(shù)列{bn}滿足bn-bn-1=an-1(n≥2,n∈N*),b1=1.
(1)求an和bn;
(2)記數(shù)列cn=$\frac{1}{2_{n}+4n}$,(n∈N*),求{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直線l經(jīng)過拋物線y2=4x焦點(diǎn)F,且與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D.
(I)若直線l的斜率為1,求線段AB的長;
(Ⅱ)求證:直線DB平行于拋物線的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線y=$\sqrt{3}$x+4與x軸和y軸的交點(diǎn)分別為A,B,以AB為邊做等邊三角形ABC,則頂點(diǎn)C的坐標(biāo)為(-$\frac{8\sqrt{3}}{3}$,4)或($\frac{4\sqrt{3}}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:x2+y2-4x-14y+45=0,及點(diǎn)Q(-2,3).
(1)P(a,a+1)在圓上,求直線PQ的斜率;
(2)若M為圓C上任一點(diǎn),求|MQ|的最大值和最小值;
(3)求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義在R上的函數(shù)f(x)對任意的實(shí)數(shù)a、b、c,都有:f(a+b)+f(b+c)+f(a+c)≥3f(a+2b+c),則f(2014)-f(2013)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知n∈N*,求證:$\frac{1}{2+1}$+$\frac{2}{{2}^{2}+2}$+$\frac{3}{{2}^{3}+3}$+…+$\frac{n}{{2}^{n}+n}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=sin(x+φ)cosx(0<φ<π)是偶函數(shù),則φ的值等于$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊答案