【題目】如圖,四棱錐P﹣ABCD的底面為矩形,PA是四棱錐的高,PB與DC所成角為45°,F(xiàn)是PB的中點(diǎn),E是BC上的動(dòng)點(diǎn).
(Ⅰ)證明:PE⊥AF;
(Ⅱ)若BC=2BE=2 AB,求直線AP與平面PDE所成角的大。
【答案】解:(Ⅰ) 建立如圖所示空間直角坐標(biāo)系.設(shè)AP=AB=2,BE=a則A(0,0,0),B(0,2,0),P(0,0,2),F(xiàn)(0,1,1),E(a,2,0)
于是, , ,
則 ,
所以AF⊥PE.
(Ⅱ)若 ,則 , ,
=(2 ,2,﹣2),
設(shè)平面PDE的法向量為 =(x,y,z),
由 ,得: ,令x=1,則 ,
于是 ,而
設(shè)直線AP與平面PDE所成角為θ,
則sinθ= = .
∴直線AP與平面PDE所成角為60°.
【解析】(Ⅰ)建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),以及向量PE,AF的坐標(biāo),得到其數(shù)量積為0即可證明結(jié)論.(Ⅱ)先根據(jù)條件求出D的坐標(biāo)以及 , 的坐標(biāo),進(jìn)而求出平面PDE的法向量的坐標(biāo),再代入向量的夾角計(jì)算公式即可得到答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用向量語(yǔ)言表述線線的垂直、平行關(guān)系和用空間向量求直線間的夾角、距離的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握設(shè)直線的方向向量分別是,則要證明∥,只需證明∥,即;則要證明,只需證明,即;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)如圖,證明命題“a是平面π內(nèi)的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫出上述命題的逆命題,并判斷其真假(不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x2+bx|(b∈R),當(dāng)x∈[0,1]時(shí),f(x)的最大值為M(b),則M(b)的最小值是( )
A.3﹣2
B.4﹣2
C.1
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,0), =(m,1),且 與 的夾角為 .
(1)求| ﹣2 |;
(2)若( +λ )與 垂直,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】歐陽(yáng)修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢入孔入,而錢不濕,可見(jiàn)“行行出狀元”,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為2cm的圓,中間有邊長(zhǎng)為0.5cm的正方形孔,若你隨機(jī)向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=1,O1:(x﹣4)2+y2=4,動(dòng)點(diǎn)P在直線x+ y+b=0上,過(guò)P分別作圓O,O1的切線,切點(diǎn)分別為A,B,若滿足PB=2PA的點(diǎn)P有且只有兩個(gè),則實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=4sinωxcos(ωx+ )+1(ω>0),其圖象上有兩點(diǎn)A(s,t),B(s+2π,t),其中﹣2<t<2,線段AB與函數(shù)圖象有五個(gè)交點(diǎn). (Ⅰ)求ω的值;
(Ⅱ)若函數(shù)f(x)在[x1 , x2]和[x3 , x4]上單調(diào)遞增,在[x2 , x3]上單調(diào)遞減,且滿足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開(kāi)展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),點(diǎn)C在x軸上.
(Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過(guò)點(diǎn)(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com