如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分別為CD、PB的中點.
(1)求證:EF⊥平面PAB;
(2)設,求直線AC與平面AEF所成角θ的正弦值.

【答案】分析:(1)求出直線EF所在的向量,再求出平面內兩條相交直線所在的向量,然后利用向量的數(shù)量積為0,根據(jù)線面垂直的判定定理得到線面垂直.
(2)求出平面的法向量以及直線所在的向量,再利用向量的有關運算求出兩個向量的夾角,進而轉化為線面角,即可解決問題.
解答:解:以D為從標原點,DC、DA、DP所在直線分別為x軸、y軸、z軸,建立空間直角坐標系D-xyz.設AB=a,
則A(0,2,0),B(a,2,0),C(a,0,0),D(0,0,0,),p(0,0,2),…(2分)

(1)由題意可得:=0×0+1×2+1×(-2)=0,=0×a+1×2+1×(-2)=0
∴EF⊥PA,EF⊥PB.
∴EF⊥平面PAB.…(6分)
(2)AB=2=(0,1,1).
設平面AEF的法向量n=(x,y,z),

令y=1,則x=…(9分)
.…(11分)
所以sinθ=1cos<.…(12分)
點評:解決此類問題的關鍵是熟練掌握幾何體的結構特征,進而得到空間中點、線、面的位置關系,利于建立空間之間坐標系,利用向量的有關知識解決空間角與空間距離以及線面的位置關系等問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大;當平面ABCD內有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案