等差數(shù)列{an}的前9項的和等于前4項的和,若a1=1,ak+a4=0,則k=(  )
分析:由“等差數(shù)列{an}前9項的和等于前4項的和”可求得公差,再由ak+a4=0可求得結(jié)果.
解答:解:∵等差數(shù)列{an}前9項的和等于前4項的和,
∴9+36d=4+6d,其中d為等差數(shù)列的公差,
∴d=-
1
6
,又∵ak+a4=0
∴1+(k-1)d+1+3d=0,代入可解得k=10
故選A
點評:本題考查等差數(shù)列的前n項和公式及其應(yīng)用,涉及方程思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項和為Rn,若Rn<λ對n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前2006項的和S2006=2008,其中所有的偶數(shù)項的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項和為Tn.若對一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案