【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)求導(dǎo)后可得,令,利用導(dǎo)數(shù)可知函數(shù)恒成立,由此可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而得到最小值;
(2)分及討論,當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),利用導(dǎo)數(shù)可知滿(mǎn)足題意,進(jìn)而得出結(jié)論.
解:(1)由已知得當(dāng)時(shí),
.
令,則.
當(dāng)時(shí),;當(dāng)時(shí),.
易知函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以,所以,
則當(dāng)時(shí),;當(dāng)時(shí),,
因此在上單調(diào)遞減,在上單調(diào)遞增,
所以.
(2)
令.
①當(dāng)時(shí),.
又因?yàn)?/span>,,所以,
此時(shí)在單調(diào)遞増,所以函數(shù)無(wú)極值.
②當(dāng)時(shí),,在上單調(diào)遞增.
又,,所以在上存在唯一零點(diǎn),設(shè)為,
所以當(dāng)時(shí),,,單調(diào)遞減;
當(dāng)時(shí),,,單調(diào)遞增,
所以當(dāng)時(shí),函數(shù)在上存在極值點(diǎn).
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,一同學(xué)通過(guò)網(wǎng)絡(luò)平臺(tái)聽(tīng)網(wǎng)課,在家堅(jiān)持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語(yǔ)文,政治,地理,下午安排了三節(jié),分別是英語(yǔ),歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的參數(shù)方程;
(2)若,直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的一個(gè)頂點(diǎn)為,且焦距為,直線(xiàn)交橢圓于、兩點(diǎn)(點(diǎn)、與點(diǎn)不重合),且滿(mǎn)足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)為坐標(biāo)原點(diǎn),若點(diǎn)滿(mǎn)足,求直線(xiàn)的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)證明:時(shí),
(3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)且的最大值是,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)若函數(shù)的最小值為0,求實(shí)數(shù)的值;
(2)若,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線(xiàn)上的點(diǎn)按坐標(biāo)變換得到曲線(xiàn),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線(xiàn)段上是否存在點(diǎn),使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com