若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),則k的值為
 
分析:根據(jù)直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),求出圓心到直線的距離;再根據(jù)點到直線的距離公式即可求出k的值.
解答:解:因為直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),如圖精英家教網(wǎng)
可得∠OPE=30°;OE=OPsin30°=
1
2
,
即圓心O(0,0)到直線y=kx+1的距離 d=
1
2
=
|0-0+1|
k2+12
⇒k=±
3

故答案為:±
3
點評:本題考查直線和圓的位置關(guān)系,點到直線的距離公式,考查計算能力,求出圓心(0,0)到直線的距離是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),則k的值為( 。
A、-
3
3
B、
3
C、-
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的兩個焦點分別為F1(-2
2
,0)
、F2(2
2
,0)
,雙曲線上一點P到F1、F2的距離的差的絕對值等于4.
(Ⅰ)求雙曲線的標準方程;
(Ⅱ)若直線y=kx-1與雙曲線C沒有公共點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(Ⅰ)若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅱ)設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點的個數(shù);
(Ⅲ)設(shè)a<b,比較f(
a+b
2
)
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一焦點在x軸上,中心在原點的雙曲線的實軸等于虛軸,且圖象經(jīng)過點
2,
3

(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個公共點,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)已知函數(shù)f(x)=ex,x∈R.
(Ⅰ) 若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅱ) 設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點的個數(shù).
(Ⅲ) 設(shè)a<b,比較
f(a)+f(b)
2
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案