(本小題滿分12分)
已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積。

(1)  (2) S=

解析試題分析:(Ⅰ)由已知得解得
所以橢圓G的方程為
(Ⅱ)設(shè)直線l的方程為設(shè)A、B的坐標(biāo)分別為AB中點為E,則因為AB是等腰△PAB的底邊,所以PE⊥AB.所以PE的斜率解得m=2。此時方程①為解得所以所以|AB|=.此時,點P(—3,2)到直線AB:的距離所以△PAB的面積S=
考點:直線與橢圓的位置關(guān)系
點評:解決該試題的關(guān)鍵是能利用性質(zhì)得到方程,同時能利用聯(lián)立方程組和韋達(dá)定理來得到直線的斜率,以及點到直線的距離公式得到面積的表示,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O,直線l與橢圓C相交于P、Q兩點,O為原點.
(Ⅰ)若直線l過橢圓C的左焦點,且與圓O交于A、B兩點,且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知拋物線經(jīng)過橢圓的兩個焦點.設(shè),又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點,且,求點的坐標(biāo)。
(Ⅱ)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標(biāo)原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
橢圓的左、右焦點分別為、,點,滿足
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于兩點,若直線與圓相交于兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分) 如圖,已知橢圓的兩個焦點分別為,斜率為k的直線l過左焦點F1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF1的中點,若,求橢圓離心率e的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案