分析 sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$∈$[-\sqrt{2},\sqrt{2}]$.由對于任意實數(shù)x,不等式sinx+cosx>m恒成立,可得m<(sinx+cosx)min,即可得出.
解答 解:sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$∈$[-\sqrt{2},\sqrt{2}]$.
∵對于任意實數(shù)x,不等式sinx+cosx>m恒成立,
∴$m<-\sqrt{2}$.
故答案為:(-∞,-$\sqrt{2}$).
點評 本題考查了三角函數(shù)的和差公式、三角函數(shù)的單調(diào)性與值域、恒成立等價轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,0] | B. | (-3,1] | C. | [-1,3)∪(3,+∞) | D. | [-1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com