【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關于直線對稱;已知偶函數(shù)滿足,當時,;若函數(shù)有五個零點,則的取值范圍是( )

A. B. C. D.

【答案】C

【解析】分析:由題意分別確定函數(shù)f(x)的圖象性質(zhì)和函數(shù)h(x)圖象的性質(zhì),然后數(shù)形結合得到關于k的不等式組,求解不等式組即可求得最終結果.

詳解:曲線右移一個單位,得,

所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),則函數(shù)h(x)的周期為2.

x[0,1]時,

y=kf(x)-h(x)有五個零點,等價于函數(shù)y=kf(x)與函數(shù)y=h(x)的圖象有五個公共點.

繪制函數(shù)圖像如圖所示,由圖像知kf(3)<1kf(5)>1,即:

,求解不等式組可得:.

的取值范圍是。

本題選擇C選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設函數(shù)的所有零點構成集合,函數(shù)的所有零點構成集合

1)試求集合、

2)令,求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,E,FG分別是AB,CC1,AD的中點.

1)求異面直線EGB1C所成角的大;

2)棱CD上是否存在點T,使AT∥平面B1EF?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】基于移動互聯(lián)技術的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,帶給人們新的出行體驗.某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,結果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代碼x

1

2

3

4

5

6

市 場占有率y(%)

11

13

16

15

20

21

(1)請在給出的坐標紙中作出散點圖;

(2)求y關于x的線性回歸方程,并預測該公司20182月份的市場占有率;

參考公式:回歸直線方程為 其中:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若存在三個不同實數(shù)使得,則的取值范圍是(

A.B.C.D.0,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,產(chǎn)品的利潤與投資成正比,其關系如圖1,產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,(注:利潤與投資單位:萬元)

1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關系,并寫出它們的函數(shù)關系式;

2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的個數(shù)①“”的否定是“,”;②用相關指數(shù)可以刻畫回歸的擬合效果,值越小說明模型的擬合效果越好;③命題“若,則”的逆命題為真命題;④若的解集為,則.

A. B. C. D.

查看答案和解析>>

同步練習冊答案