A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)數(shù)學(xué)公式,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式數(shù)學(xué)公式成立.

證明:(1)對任意
于是,(2分)
,
所以φ(2x)∈(1,2).
對任意x1,x2∈(1,2),|φ(2x1)-φ(2x2)|
==
由于
所以,(4分)
,
則0<L<1,|φ(2x1)-φ(2x2)|≤L|x1-x2|,所以φ(x)∈A.(7分)
(2)反證法:設(shè)存在x0,x0′∈(1,2),x0≠x0′,使得x0=φ(2x0),x0′=φ(2x0′),
則由|φ(2x0)-φ(2x0′)|≤L|x0-x0′|,
得|x0-x0'|≤L|x0-x0'|,所以L≥1,與題設(shè)矛盾,故結(jié)論成立.(10分)
(3)|x3-x2|=|φ(2x2)-φ(2x1)|≤L|x2-x1|,所以進一步可得|xn+1-xn|≤Ln-1|x2-x1|,n∈N*,(12分)
于是|xk+p-xk|=|(xk+p-xk+p-1)+(xk+p-1-xk+p-2)+…+(xk+1-xk)|
≤|xk+p-xk+p-1|+|xk+p-1-xk+p-2|+…+|xk+1-xk|≤Lk+p-2|x2-x1|+LK+P-3|x2-x1|+…+Lk-1|x2-x1|=.(16分)
分析:(1)欲證Φ(x)∈A,即證Φ(x)滿足條件的兩條:①②.
①對任意,所以φ(2x)∈(1,2).
②對任意x1,x2∈(1,2),|φ(2x1)-φ(2x2)|利用絕對值不等式的性質(zhì)得到:0<L<1,|φ(2x1)-φ(2x2)|≤L|x1-x2|,所以φ(x)∈A;
(2)利用反證法證明:先假設(shè)存在x0,x0′∈(1,2),x0≠x0′,使得x0=φ(2x0),x0′=φ(2x0′),
則由條件得出與題設(shè)矛盾,故結(jié)論成立;
(3)先由|x3-x2|=|φ(2x2)-φ(2x1)|≤L|x2-x1|,所以進一步可得|xn+1-xn|≤Ln-1|x2-x1|,n∈N*,最后利用放縮法得到證明.
點評:本題考查的是抽象函數(shù)問題及其應(yīng)用、反證法等.在解答的過程當中充分體現(xiàn)了反證法的思想、問題轉(zhuǎn)化的思想以及絕對值不等式性質(zhì)應(yīng)用.值得同學(xué)們體會和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇模擬 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省連云港市東?h高級中學(xué)高三(上)期末數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè),證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,這樣的x是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇北四市高三第二次聯(lián)考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè),證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,這樣的x是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式成立.

查看答案和解析>>

同步練習(xí)冊答案