(08年長(zhǎng)郡中學(xué)二模理)(12分)

  已知函數(shù)

    (1)求的最小正周期及取得最大值時(shí)x的集合;

    (2)求證:函數(shù)的圖象關(guān)于直線對(duì)稱.

解析:(1)解:

                  = 

       所以的最小正周期是 

         R,所以當(dāng)Z)時(shí),的最大值為.

       即取得最大值時(shí)x的集合為Z}      6分

   (2)證明:欲證函數(shù)的圖象關(guān)于直線對(duì)稱,只要證明對(duì)于任意,

成立即可.

從而函數(shù)的圖象關(guān)于直線對(duì)稱      12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理) (12分)  某工廠為了保障安全生產(chǎn),每月初組織工人參加一次技能測(cè)試. 甲、乙兩名工人通過(guò)每次測(cè)試的概率分別是. 假設(shè)兩人參加測(cè)試是否通過(guò)相互之間沒(méi)有影響.

   (I)求甲工人連續(xù)3個(gè)月參加技能測(cè)試至少1次未通過(guò)的概率;

   (II)求甲、乙兩人各連續(xù)3個(gè)月參加技能測(cè)試,甲工人恰好通過(guò)2次且乙工人恰好通過(guò)1次的概率;

   (III)工廠規(guī)定:工人連續(xù)2次沒(méi)通過(guò)測(cè)試,則被撤銷上崗資格. 求乙工人恰好參加4次測(cè)試后被撤銷上崗資格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理)(13分)如圖,公園有一塊邊長(zhǎng)為2a的等邊三角形的邊角地,今要修成草地,并使DE把草坪分成面積相等的兩部分,如果

   (1)將用x表示y的函數(shù)關(guān)系;并指出函數(shù)的定義域;

   (2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,問(wèn)DE的位置應(yīng)如何確定?如果DE是觀光路線,則希望它最長(zhǎng),問(wèn)DE的位置應(yīng)如何確定?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理)(13分)已知函數(shù),其中。設(shè)兩曲線有公共點(diǎn),且在公共點(diǎn)處的切線相同。

(1)若,求的值;

(2)用表示,并求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模文)(13分)已知數(shù)列,是其前項(xiàng)的和,且≥2),

(1)求數(shù)列的通項(xiàng)公式;        

(2)設(shè),,是否存在最小的正整數(shù),使得對(duì)于任意的正整數(shù)n,有恒成立?若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模文)(13分)設(shè)F是拋物線的焦點(diǎn),過(guò)點(diǎn)M(-1,0)且以為方向向量的直線順次交拋物線于A,B兩點(diǎn)。

(1)當(dāng)時(shí),若的夾角為,求拋物線的方程;

(2)若點(diǎn)A,B滿足,證明為定值,并求此時(shí)△AFB的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案