某造船公司年最高造船量是20艘. 已知造船x艘的產(chǎn)值函數(shù)為R(x)="3700x" + 45x2 – 10x3(單位:萬(wàn)元), 成本函數(shù)為C (x) =" 460x" + 5000 (單位:萬(wàn)元). 又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf (x)定義為: Mf (x) =" f" (x+1) – f (x). 求:
(1) 利潤(rùn)函數(shù)P(x) 及邊際利潤(rùn)函數(shù)MP(x);
(2) 年造船量安排多少艘時(shí), 可使公司造船的年利潤(rùn)最大?
(3) 邊際利潤(rùn)函數(shù)MP(x)的單調(diào)遞減區(qū)間, 并說(shuō)明單調(diào)遞減在本題中的實(shí)際意義是什么?

(1)MP (x) =" P" ( x + 1 ) – P (x) =" –" 30x2 + 60x +3275   (xÎN且xÎ[1, 20])
(2)年建造12艘船時(shí), 公司造船的年利潤(rùn)最大
(3)MP (x)是減函數(shù)說(shuō)明: 隨著產(chǎn)量的增加,每艘利潤(rùn)與前一臺(tái)比較,利潤(rùn)在減少
(1) P(x) =" R" (x) – C (x) =" –" 10x3 + 45x2 + 3240x – 5000  (xÎN且xÎ[1, 20]); 
MP (x) =" P" ( x + 1 ) – P (x) =" –" 30x2 + 60x +3275   (xÎN且xÎ[1, 20]).   
(2) P`(x) =" –" 30x2 + 90x + 3240 =" –" 30( x +9 )(x – 12)  (xÎN且xÎ[1, 20])    
當(dāng)1&pound; x < 12時(shí), P`(x) > 0, P(x)單調(diào)遞增,
當(dāng) 12 <x &pound; 20時(shí), P`(x) < 0 , P ( x ) 單調(diào)遞減.
∴ x =" 12" 時(shí), P(x)取最大值,                                      
即, 年建造12艘船時(shí), 公司造船的年利潤(rùn)最大.                      
(3) 由MP(x ) =" " – 30( x – 1) 2 + 3305   (x&Icirc;N且x&Icirc;[1, 20]).
∴當(dāng)1< x &pound; 20時(shí),MP (x)單調(diào)遞減.                                
MP (x)是減函數(shù)說(shuō)明: 隨著產(chǎn)量的增加,每艘利潤(rùn)與前一臺(tái)比較,利潤(rùn)在減少.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某造船公司年最高造船量是20艘,已知造船x艘的產(chǎn)值為R(x)=3700x+45x2-10x3(萬(wàn)元),成本函數(shù)為C(x)=460x+5000(萬(wàn)元).又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為M f(x)=f(x+1)-f(x)求:
(1)利潤(rùn)函數(shù)p(x)及邊際利潤(rùn)函數(shù)M p(x);
(2)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某造船公司年最高造船量是20艘. 已知造船x艘的產(chǎn)值函數(shù)R (x)=3700x + 45x2 – 10x3(單位:萬(wàn)元), 成本函數(shù)為C (x) = 460x + 5000 (單位:萬(wàn)元). 又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf (x)定義為: Mf (x) = f (x+1) – f (x). 求:(提示:利潤(rùn) = 產(chǎn)值 – 成本)

(1) 利潤(rùn)函數(shù)P(x) 及邊際利潤(rùn)函數(shù)MP(x);

    (2) 年造船量安排多少艘時(shí), 可使公司造船的年利潤(rùn)最大?

    (3) 邊際利潤(rùn)函數(shù)MP(x)的單調(diào)遞減區(qū)間, 并說(shuō)明單調(diào)遞減在本題中的實(shí)際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某造船公司年最高造船量是20艘,已知造船x艘的產(chǎn)值為R(x)=3700x+45x2-10x3(萬(wàn)元),成本函數(shù)為C(x)=460x+5000(萬(wàn)元).又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為M f(x)=f(x+1)-f(x)求:
(1)利潤(rùn)函數(shù)p(x)及邊際利潤(rùn)函數(shù)M p(x);
(2)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某造船公司年最高造船量是20艘,已知造船x艘的產(chǎn)值為R(x)=3700x+45x2﹣10x3(萬(wàn)元),成本函數(shù)為C(x)=460x+5000(萬(wàn)元).又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為M f(x)=f(x+1)﹣f(x)求:

(1)利潤(rùn)函數(shù)p(x)及邊際利潤(rùn)函數(shù)M p(x);

(2)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南京市高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某造船公司年最高造船量是20艘,已知造船x艘的產(chǎn)值為R(x)=3700x+45x2-10x3(萬(wàn)元),成本函數(shù)為C(x)=460x+5000(萬(wàn)元).又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為M f(x)=f(x+1)-f(x)求:
(1)利潤(rùn)函數(shù)p(x)及邊際利潤(rùn)函數(shù)M p(x);
(2)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案