5.已知x0(0<x0<1)是函數(shù)f(x)=lnx-$\frac{1}{x-1}$的一個零點(diǎn),若a∈(0,x0),b∈(x0,1)則(  )
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)<0,f(b)>0D.f(a)>0,f(b)<0

分析 在同一坐標(biāo)系中作出函數(shù)y=1nx與y=$\frac{1}{x-1}$的圖象,由圖可得結(jié)論.

解答 解:令 f(x)=lnx-$\frac{1}{x-1}$=0,從而有l(wèi)nx=$\frac{1}{x-1}$,此方程的解即為函數(shù)f(x)的零點(diǎn)
在同一坐標(biāo)系中作出函數(shù)y=1nx與y=$\frac{1}{x-1}$的圖象,
由圖可得f(a)<0,f(b)>0,
故選:C.

點(diǎn)評 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了化歸與轉(zhuǎn)化與數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,5]時,f(x)=2-|x-4|,則下列不等式一定成立的是(  )
A.f( cos$\frac{2π}{3}$)>f(sin$\frac{2π}{3}$)B.f(sin 1)<f(cos 1)
C.f(sin$\frac{π}{6}$)<f(cos$\frac{π}{6}$)D.f(cos 2)>f(sin 2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列a1,a2,a3,a4滿足a1=a4,$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$(n=1,2,3),則a1所有可能的值構(gòu)成的集合為(  )
A.{±$\frac{1}{2}$,±1}B.{±1,±2}C.{±$\frac{1}{2}$,±2}D.{±$\frac{1}{2}$,±1,±2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,已知$\frac{{{a^2}+{b^2}-{c^2}}}{ab}$•(${\frac{a}{c}$cosB+$\frac{c}$cosA)=1.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的周長為5+$\sqrt{7}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{ax^{2}+1}{bx+c}$(a,b,c∈N)是奇函數(shù),f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)判斷函數(shù)f(x)在[1,+∞)上的單調(diào)性,并用定義法證明;
(3)若f(x)-k>0,對任意的x∈[5,8)時恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合{x∈N*|x-3<2}用列舉法可表示為( 。
A.{x<5}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=lnx-$\frac{2(x-1)}{x+1}$(x>1).
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)證明:①ln$\frac{n}{n-1}$>$\frac{1}{n}$;
②$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<lnn(n∈N,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若數(shù)列{an}的前n項和為Sn=kn2+n,且a10=20,則a100=( 。
A.200B.160C.120D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A={x|ax+2=0},B={x|x2-3x+2=0},且A⊆B.求由a可能的取值組成的集合.

查看答案和解析>>

同步練習(xí)冊答案