已知函數(shù)f(x)=(ax2+bx+c)e-x(a≠0)的圖象過點(0,-2),且在該點的切線方程為4x-y-2=0.
(Ⅰ)若f(x)在[2,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)F(x)=f(x)-m恰好有一個零點,求實數(shù)m的取值范圍.
分析:(Ⅰ)由f(0)=-2,可得c的值,求導函數(shù),利用切線方程可得b=的值,根據(jù)f(x)在[2,+∞)上為單調(diào)增函數(shù),可得(-ax-2)(x-2)e-x≥0在[2,+∞)上恒成立,由此可求實數(shù)a的取值范圍;
(Ⅱ)函數(shù)F(x)=f(x)-m恰好有一個零點,即y=m和y=f(x)恰好有一個交點,求導函數(shù),再進行分類討論:①當a>0時,f(x)在區(qū)間(-∞,-
2
a
),(2,+∞)單調(diào)遞減,在(-
2
a
,2)
上單調(diào)遞增;②當a<0時:(ⅰ)當-
2
a
>2,即-1<a<0時,f(x)在區(qū)間(-∞,2),(-
2
a
,+∞)單調(diào)遞增,在(2,-
2
a
)上單調(diào)遞減;(ⅱ)當-
2
a
2時,即a<-1 時,f(x)在區(qū)間(-∞,-
2
a
),(2,+∞)單調(diào)遞增,在(-
2
a
,2)上單調(diào)遞減;(ⅲ)-
2
a
=2時,即a=-1時,f(x)在R上單調(diào)增,從而可得結論.
解答:解:(Ⅰ)由f(0)=-2,可得c=-2…(1分)
求導函數(shù)可得f′(x)=(-ax2+2ax-bx+b-c)e-x,∴f′(0)=(b-c)e0=b-c
∵切線方程為4x-y-2=0,∴b-c=4,∴b=2…(3分)
∴f(x)=(ax2+2x-2)e-x,f′(x)=(-ax-2)(x-2)e-x,
∵f(x)在[2,+∞)上為單調(diào)增函數(shù),
∴(-ax-2)(x-2)e-x≥0在[2,+∞)上恒成立
即-ax-2≥0,∴a≤-
2
x
,∴a≤-1 …(5分)
(Ⅱ)函數(shù)F(x)=f(x)-m恰好有一個零點,即y=m和y=f(x)恰好有一個交點
∵f′(x)=(-ax-2)(x-2)e-x,

①當a>0時,f(x)在區(qū)間(-∞,-
2
a
),(2,+∞)單調(diào)遞減,在(-
2
a
,2)
上單調(diào)遞增,極大值為f(2)=(4a+2)e-2,極小值為f(-
2
a
)=-2e
2
a
,(當x趨向于+∞時圖象在x軸上方,并且無限接近于x軸)
所以m=(-2)e
2
a
或m>(4a+2)e-2,…(8分)
②當a<0時:(。┊-
2
a
>2,即-1<a<0時,f(x)在區(qū)間(-∞,2),(-
2
a
,+∞)單調(diào)遞增,在(2,-
2
a
)上單調(diào)遞減,極大值f(2)=(4a+2)e-2,極小值為f(-
2
a
)=-2e
2
a
,(當x趨向于+∞時圖象在x軸下方,并且無限接近于x軸)
當(4a+2)e-2≥0,即-
1
2
≤a<0
時,m=(4a+2)e-2或m<(-2)e
2
a

當(4a+2)e-2<0,即-1<a<-
1
2
時,(4a+2)e-2<m<0或m<(-2)e
2
a
…(11分)
(ⅱ)當-
2
a
2時,即a<-1 時,f(x)在區(qū)間(-∞,-
2
a
),(2,+∞)單調(diào)遞增,在(-
2
a
,2)上單調(diào)遞減,極小值為f(2)=(4a+2)e-2,極大值為f(-
2
a
)=-2e
2
a
,(當x趨向于+∞時圖象在x軸下方,并且無限接近于x軸)
∴m=(-2)e
2
a
或m<(4a+2)e-2,…(13分)
(ⅲ)-
2
a
=2時,即a=-1時,f(x)在R上單調(diào)增(當x趨向于+∞時圖象在x軸下方,并且無限接近于x軸),此時m<0 …(14分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的極值,考查分類討論的數(shù)學思想,正確分類是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案