(本小題滿分13分)
袋中有大小相同的三個球,編號分別為1、2和3,從袋中每次取出一個球,若取到的球的編號為偶數(shù),則把該球編號加1(如:取到球的編號為2,改為3)后放回袋中繼續(xù)取球;若取到球的編號為奇數(shù),則取球停止,用表示所有被取球的編號之和.
(Ⅰ)求的概率分布;
(Ⅱ)求的數(shù)學期望與方差.
(1)

1
3
5




(2)

試題分析:解:(Ⅰ)在時,表示第一次取到的1號球,;          1分
時,表示第一次取到2號球,第二次取到1號球,或第一次取到3號球,;                    4分
時,表示第一次取到2號球,第二次取到3號球,
.                         6分
的概率分布為                                   7分

1
3
5




(Ⅱ),                10分
.     13分
點評:解決的關鍵是對于各個取值的概率的準確求解,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(滿分12分)某射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150米處,這時命中記2分,且停止射擊;若第二次仍未命中還可以進行第三次射擊,但此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分。已知射手在100米處擊中目標的概率為,他的命中率與目標距離的平方成反比,且各次射擊都是獨立的。
(1)求這名射手在射擊比賽中命中目標的概率;
(2)求這名射手在比賽中得分的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130 t該農(nóng)產(chǎn)品.以X(單位: t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)將T表示為X的函數(shù);
(2)根據(jù)直方圖估計利潤T不少于57 000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x∈[100,110),則取X=105,且X=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一組數(shù)據(jù)的平均數(shù)是2,方差是3,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是_______和_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某品牌汽車4S店對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤。
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學期望EY

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
分成5個路段,每個路段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘,假設他在各
交通崗是否遇到紅燈是相互獨立的,并且概率都是
(1)求張師傅此行時間不少于16分鐘的概率
(2)記張師傅此行所需時間為Y分鐘,求Y的分布列和均值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
為了解社會對學校辦學質(zhì)量的滿意程度,某學校決定用分層抽樣的方法從高中三個年級的家長委員會中共抽取6人進行問卷調(diào)查,已知高一、高二、高三的家長委員會分別有54人、1 8人、36人.
(I)求從三個年級的家長委員會中分別應抽的家長人數(shù);
(Ⅱ)若從抽得的6人中隨機抽取2人進行訓查結果的對比,求這2人中至少有一人是高三學生家長的慨率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)最近,李師傅一家三口就如何將手中的10萬元錢進行投資理財,提出了三種方案.
第一種方案:李師傅的兒子認為:根據(jù)股市收益大的特點,應該將10萬元全部用來買股票.據(jù)分析預測:投資股市一年可能獲利40%,也可能虧損20%(只有這兩種可能),且獲利的概率為0.5.
第二種方案:李師傅認為:現(xiàn)在股市風險大,基金風險較小,應將10萬元全部用來買基金.據(jù)分析預測:投資基金一年后可能獲利20%,可能損失10%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為
第三種方案:李師傅的妻子認為:投資股市、基金均有風險,應將10萬元全部存入銀行一年,現(xiàn)在存款年利率為4%,存款利息利率為5%.
針對以上三種投資方案,請你為李師傅家選擇一種合理的理財方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(本小題滿分12分)
NBA總決賽采用“7場4勝制”,由于NBA有特殊的政策和規(guī)則,能進入決賽的球隊實力都較強,因此可以認為,兩個隊在每一場比賽中取勝的概率相等。根據(jù)不完全統(tǒng)計,主辦一場決賽,每一方組織者有望通過出售電視轉(zhuǎn)播權、門票及零售商品、停車費、廣告費等收入獲取收益2000萬美元(1)求比賽場數(shù)的分布列;(2)求雙方組織者通過比賽獲得總收益的數(shù)學期望。

查看答案和解析>>

同步練習冊答案