【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜邊 ,側(cè)棱AA1=2,點D為AB的中點,點E在線段AA1上,AE=λAA1(λ為實數(shù)).
(1)求證:不論λ取何值時,恒有CD⊥B1E;
(2)當(dāng) 時,記四面體C1﹣BEC的體積為V1 , 四面體D﹣BEC的體積為V2 , 求V1:V2 .
【答案】
(1)證明:∵△ABC是等腰直角三角形,點D為AB的中點,
∴CD⊥AB.…
∵AA1⊥平面ABC,CD平面ABC,∴AA1⊥CD.…
又∵AA1平面ABB1A1,AB平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.…
又∵B1E平面ABB1A1,∴CD⊥B1E.…
(2)∵△ABC是等腰直角三角形,且斜邊 ,∴AC=BC=1. ,… ,…
所以V1:V2=6…
【解析】(1)由已知可得到CD⊥AB,根據(jù)線面垂直可得到AA1⊥CD,不難得到線CD⊥面ABB1A1即有CD⊥B1E,(2)當(dāng) λ = 時,表示出各邊的大小,根據(jù)等體積法可得其比值的大小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 存在互不相等實數(shù)a,b,c,d,有f(a)=f(b)=f(c)=f(d)=m.現(xiàn)給出三個結(jié)論:
⑴m∈[1,2);
⑵a+b+c+d∈[e﹣3+e﹣1﹣2,e﹣4﹣1),其中e為自然對數(shù)的底數(shù);
⑶關(guān)于x的方程f(x)=x+m恰有三個不等實根.
正確結(jié)論的個數(shù)為( 。
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=2,A=120°, .
(Ⅰ)求邊AB的長;
(Ⅱ)設(shè)(3,4)是BC邊上一點,且△ACD的面積為 ,求∠ADC的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點A(1,f(1))處的切線的斜率為3,數(shù)列 的前n項和為Sn , 則S2017的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù)λ>0,若對任意的x∈(0,+∞),不等式eλx﹣ ≥0恒成立,則λ的最小值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2=r2(r>0)與直線l0:y= 相切,點A為圓C1上一動點,AN⊥x軸于點N,且動點M滿足 ,設(shè)動點M的軌跡為曲線C.
(1)求動點M的軌跡曲線C的方程;
(2)若直線l與曲線C相交于不同的兩點P、Q且滿足以PQ為直徑的圓過坐標(biāo)原點O,求線段PQ長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點,且與線段CD(包括端點C、D)有兩個交點,則該雙曲線的離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若 ,解不等式 ;
(3)若 ,且對任意 ,方程 在 總存在兩不相等的實數(shù)根,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com