已知函數(shù),且函數(shù)f(x)與g(x)的圖像關(guān)于直線y=x對稱,又,g(1)=0.

(Ⅰ)求f(x)的值域;

(Ⅱ)是否存在實數(shù)m,使得命題p:f(m2-m)<f(3m-4)和,滿足復(fù)合命題p且q為真命題?若存在,求出m的取值范圍;若不存在,說明理由.

答案:
解析:

  解:(Ⅰ)依題意互為反函數(shù),由

  ,得

   3分

  故上是減函數(shù)

  

  即的值域為.6分

  (Ⅱ)由(Ⅰ)知上的減函數(shù),上的減函數(shù),

  又

   9分

  故 解得

  因此,存在實數(shù)m,使得命題 為真命題,且m的取值范圍為.12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b(a>0,b∈R),x∈R
(1)若-1為f(x)=0的一個根,且函數(shù)f(x)的值域為[-4,+∞),求f(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,h(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+  
1
2
bx2+cx

(1)若函數(shù)f(x)有三個零點x1,x2,x3,且x1+x2+x3=
9
2
,x
1
x3=-12
,且a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=-
1
2
a
,且3a>2c>2b,試問:導(dǎo)函數(shù)f(x)在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;  ②f(
x
5
)=
1
2
f(x);  ③f(1-x)=1-f(x).則f(
4
5
)=
1
2
1
2
,f(
1
2013
)=
1
32
1
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
f(
1
12
)
=
1
4
1
4

查看答案和解析>>

同步練習(xí)冊答案