1.一束光線從A(1,0)點處射到y(tǒng)軸上一點B(0,2)后被y軸反射,則反射光線所在直線的方程是( 。
A.x+2y-2=0B.2x-y+2=0C.x-2y+2=0D.2x+y-2=0

分析 由反射定律可得點A(-1,0)關于y軸的對稱點A′(1,0)在反射光線所在的直線上,再根據(jù)點b(0,1)也在反射光線所在的直線上,用兩點式求得反射光線所在的直線方程.

解答 解:由反射定律可得點A(1,0)關于y軸的對稱點A′(-1,0)在反射光線所在的直線上,
再根據(jù)點B(0,2)也在反射光線所在的直線上,
用兩點式求得反射光線所在的直線方程為$\frac{x}{-1}+\frac{y}{2}$=1,即2x-y+2=0,
故選:B.

點評 本題主要考查求一個點關于直線的對稱點的坐標,用兩點式求直線的方程,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l的方程為2x+my-4m-4=0,m∈R,點P的坐標為(-1,0).
(1)求證:直線l恒過定點,并求出定點坐標;
(2)設點Q為直線l上的動點,且PQ⊥l,求|PQ|的最大值;
(3)設點P在直線l上的射影為點A,點B的坐標為($\frac{9}{2}$,5),求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若a<b<0,則下列不等式錯誤的是(  )
A.$\frac{1}{a}>\frac{1}$B.a3>b3C.a2>b2D.$\frac{a}+\frac{a}>2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,某觀光休閑莊園內有一塊扇形花卉園OAB,其中O為扇形所在圓的圓心,扇形半徑為500米,cos∠AOB=$\frac{1}{4}$.莊園經營者欲在花卉園內修建一條賞花長廊,分別在邊OA、弧$\widehat{AB}$、邊OB上選點D,C,E修建賞花長廊CD,CE,且CD∥OB,CE∥OA,設CD長為x米,CE長為y米.
(Ⅰ)試求x,y滿足的關系式;
(Ⅱ)問x,y分別為何值時,才能使得修建賞花長廊CD與CE的總長最大,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知正方體ABCD-A1B1C1D1的棱長為1,給出下列四個命題:
①對角線AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點為頂點的四面體的體積都是$\frac{1}{6}$;
④正方體與以A為球心,1為半徑的球在該正方體內部部分的體積之比為6:π
其中正確命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某工廠組織工人技能培訓,其中甲、乙兩名技工在培訓時進行的5次技能測試中的成績如圖莖葉圖所示.
(1)現(xiàn)要從中選派一人參加技能大賽,從這兩名技工的測試成績分析,派誰參加更合適;
(2)若將頻率視為概率,對選派參加技能大賽的技工在今后三次技能大賽的成績進行預測,記這三次成績中高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知點A(-2,3)、B(3,2),若直線l:y=kx-2與線段AB沒有交點,則l的斜率k的取值范圍是$(-\frac{5}{2},\frac{4}{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1,A1C1的中點,則BM與AN所成角的余弦值為( 。
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.等差數(shù)列{an}中,若a2,a2016為方程x2-10x+16=0的兩根,則a3+a1010+a2014=( 。
A.10B.15C.20D.40

查看答案和解析>>

同步練習冊答案