13.命題“若a>b,則2a>2b-1”的逆命題是若2a>2b-1,則a>b.

分析 利用逆命題的定義,寫出結(jié)果即可.

解答 解:命題“若a>b,則2a>2b-1”的逆命題是:若2a>2b-1,則a>b.
故答案為:若2a>2b-1,則a>b

點評 本題考查逆命題的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)在極坐標(biāo)系中,求過極點,傾斜角是$\frac{π}{3}$的直線的極坐標(biāo)方程
(2)在極坐標(biāo)系中,求圓心在$({3,\frac{π}{2}})$,半徑為3的圓的極坐標(biāo)方程
(3)曲線C的極坐標(biāo)方程為:ρ=2cosθ-4sinθ,求曲線C的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,滿足對任意的實數(shù)x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實數(shù)a的取值范圍為( 。
A.(-∞,2)B.[$\frac{13}{4}$,2)C.[$\frac{13}{8}$,2)D.(-∞,$\frac{13}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x2-2ax+a+2≥0對任意x∈[0,2]恒成立,則實數(shù)a的取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)為定義在R上的奇函數(shù),f(1)=1,f(x+2)=f(x)+f(2),則f(5)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且$0<10{log_m}^{({ab})}<1$,則m的取值范圍是( 。
A.m>1B.1<m<8C.m>8D.0<m<1或 m>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某部隊為了在大閱兵中樹立軍隊的良好形象,決定從參訓(xùn)的12名男兵和18名女兵中挑選出正式閱兵人員,這30名軍人的身高如圖:單位:cm
若身高在175cm(含175cm)以上,定義為“高個子”,身高在175cm以下,定義為“非高個子”,且只有“女高個子”才能擔(dān)任“護(hù)旗手”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中選定5名軍人,分別抽“高個子”和“非高個子”各多少人?
(2)如果用分層抽樣的方法從“高個子”和“非高個子”中共選定了5名軍人,再從這5人中任選2人,那么至少有1人是“高個子”的概率是多少?
(3)如果從選定的3名“男高個子”和2名“女高個子”中任選2名軍人,求所選這2名軍人中恰有1人能擔(dān)任“護(hù)旗手”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實數(shù)x,y,z為正數(shù),則$\frac{xy+yz}{{{x^2}+{y^2}+{z^2}}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域為(0,2],則函數(shù)y=f(x+1)的定義域為(-1,-$\frac{1}{5}$].

查看答案和解析>>

同步練習(xí)冊答案