16.中秋節(jié)吃月餅是我國的傳統(tǒng)習俗,設(shè)一盤中盛有7塊月餅,其中五仁月餅2塊,蓮蓉月餅3塊,豆沙月餅2塊,這三種月餅的形狀大小完全相同,從中任取3塊.
(Ⅰ)求這三種月餅各取到1塊的概率;
(Ⅱ)設(shè)X表示取到的豆沙月餅的個數(shù),求X的分布列,數(shù)學期望與方差.

分析 (I)可得P=$\frac{{∁}_{2}^{1}{∁}_{3}^{1}{∁}_{2}^{1}}{{∁}_{7}^{3}}$.
(II)利用超幾何分布列的概率計算公式及其數(shù)學期望、方差的計算公式即可得出.

解答 解:(Ⅰ)$P=\frac{C_2^1C_3^1C_2^1}{C_7^3}=\frac{12}{15}$.
(Ⅱ)X可能取0,1,2,$P(X=0)=\frac{C_5^3}{C_7^3}=\frac{10}{35}=\frac{2}{7}$,$P(X=1)=\frac{C_5^2C_2^1}{C_7^3}=\frac{4}{7}$,$P(X=2)=\frac{C_5^1C_2^2}{C_7^3}=\frac{1}{7}$,
X的分布列

X012
P$\frac{2}{7}$$\frac{4}{7}$$\frac{1}{7}$
∴$E(X)=\frac{4}{7}+\frac{2}{7}=\frac{6}{7}$.
$D(X)=\frac{2}{7}{({0-\frac{6}{7}})^2}+\frac{4}{7}{({1-\frac{6}{7}})^2}+\frac{1}{7}{({2-\frac{6}{7}})^2}=\frac{20}{49}$.

點評 本題考查了超幾何分布列的概率計算及其數(shù)學期望、方差的計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,若f(x-2)>f(3),則x的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.過點(3,-2)且與橢圓3x2+8y2=24有相同焦點的橢圓方程為(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{10}$=1B.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{10}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若{1,2}={x|x2+bx+c=0},則( 。
A.b=-2,c=3B.b=2,c=-3C.b=-3,c=2D.b=3,c=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-2a)x+5,(x≤12)}\\{{a}^{x-13},(x>12)}\end{array}\right.$,若數(shù)列{an}滿足an=f(n)(n∈N*),且對任意的兩個正整數(shù)m,n(m≠n)都有(m-n)(am-an)<0,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{2}$,$\frac{2}{3}$]B.($\frac{1}{2}$,$\frac{3}{4}$)C.($\frac{3}{4}$,1)D.($\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系中,傾斜角為α的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù)).
(Ⅰ)以坐標原點O為極點,x軸非負半軸為極軸建立極坐標系(與平面直角坐標系的單位長度相同),當α=60°時,求直線l的極坐標方程;
(Ⅱ)已知點P(1,0),直線l與橢圓$\frac{x^2}{2}$+y2=1相交于點A、B,求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.從集合{0.3,0.5,3,4,5,6}中任取3個不同的元素,分別記為x,y,z,則lgx•lgy•lgz<0的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系xOy中,已知一動圓經(jīng)過點(2,0)且在y軸上截得的弦長為4,設(shè)動圓圓心的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(1,0)作互相垂直的兩條直線l1,l2,l1與曲線C交于A,B兩點l2與曲線C交于E,F(xiàn)兩點,線段AB,EF的中點分別為M,N,求證:直線MN過定點P,并求出定點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.一艘海輪從A處出發(fā),以40海里/時的速度沿東偏南50°方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是東偏南20°,在B處觀察燈塔,其方向是北偏東65°,求B,C兩點間的距離.

查看答案和解析>>

同步練習冊答案