已知P為曲線C上任一點(diǎn),若P到點(diǎn)F的距離與P到直線距離相等
(1)求曲線C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點(diǎn)E(a,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.

(1)(2)(I)(II)a=0定值為-1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn).
為坐標(biāo)原點(diǎn),求證:;
②設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,求四邊形面積的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn),且.
(Ⅰ)求直線交點(diǎn)的軌跡的方程;
(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題分12分)
如圖,斜率為1的直線過拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, 將直線按向量平移得到直線,上的動(dòng)點(diǎn),為拋物線弧上的動(dòng)點(diǎn).
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與橢圓交于,兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點(diǎn)為在第一象限的交點(diǎn)為為坐標(biāo)原點(diǎn),且的面積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作直線兩點(diǎn),射線分別交兩點(diǎn).
(I)求證:點(diǎn)在以為直徑的圓的內(nèi)部;
(II)記的面積分別為,問是否存在直線,使得?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x2=4y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢,的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點(diǎn)的直線(斜率存在時(shí))與橢圓交于、兩點(diǎn),設(shè)為橢圓軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線是以O(shè)為頂點(diǎn)、為焦點(diǎn)的拋物線的一部分,A是曲線的交點(diǎn)
為鈍角.

(1)求曲線的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

同步練習(xí)冊答案