13.如圖,在三棱錐ABCD中,點M,N分別是△ABC和△ACD的重心,求證:MN∥BD.

分析 連結(jié)AM,AN,并延長分別交BC,CD于F,E,EF為BD的中位線,再根據(jù)重心的性質(zhì)可知,MN∥EF,即可證明結(jié)論.

解答 解:連結(jié)AM,AN,并延長分別交BC,CD于F,E,則F,E分別是BC,CD的中點,連結(jié)EF,則EF為BD的中位線,
所以EF平行且等于$\frac{1}{2}$BD,
因為M、N分別是△ABC和△ACD的重心,
所以$\frac{AM}{AF}=\frac{AN}{AE}$=$\frac{2}{3}$,
所以MN∥EF,
所以MN∥BD.

點評 本題主要考查重心和中位線的性質(zhì),考查學(xué)生的運(yùn)算能力,要求熟練掌握中位線和重心的比例性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對稱軸.
①求g(x)的周期和單調(diào)遞增區(qū)間;
②若p∧q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知各頂點都在同一個球面上的正四棱錐高為3,底面邊長為$\sqrt{6}$,則這個球的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)在x=0處可導(dǎo),且f(0)=0,函數(shù)g(x)=$\left\{\begin{array}{l}{\frac{f(x)}{x},x≠0}\\{a,x=0}\end{array}\right.$,試確定a的值,使g(x)在x=0處連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線y=kx-1與雙曲線x2-y2=1的左支有兩個公共點,則k的取值范圍是( 。
A.(-$\sqrt{2}$,0)B.(-$\sqrt{2}$,$\sqrt{2}$)C.(-$\sqrt{2}$,-1)D.(-$\sqrt{2}$,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα<0,cosα<0.
(1)求角α的集合;
(2)求角$\frac{α}{2}$的終邊所在的象限;
(3)試判斷sin$\frac{α}{2}$cos$\frac{α}{2}$,tan$\frac{α}{2}$的符號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=-x2+mx-2,x∈[0,5],在x=2處取得最大值.
(1)求m的值,并寫出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果棱長為2$\sqrt{2}$的正四面體的頂點都在一個球面上,那么這個球的表面積是(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線3x+4y+12=0與⊙C:(x-1)2+(y-1)2=9的位置關(guān)系是( 。
A.相交并且過圓心B.相交不過圓心C.相切D.相離

查看答案和解析>>

同步練習(xí)冊答案