1.若雙曲線$\frac{x^2}{64}-\frac{y^2}{36}$=1上一點(diǎn)P到它的左焦點(diǎn)的距離為18,則點(diǎn)P到右焦點(diǎn)的距離為(  )
A.2B.34C.6D.2或34

分析 利用雙曲線的定義,即可求得點(diǎn)P到雙曲線的右焦點(diǎn)的距離.

解答 解:設(shè)點(diǎn)P到雙曲線的右焦點(diǎn)的距離是x,
∵雙曲線$\frac{x^2}{64}-\frac{y^2}{36}$=1上一點(diǎn)P到它的左焦點(diǎn)的距離為18,
∴|x-18|=2×8,
∴x=2或34.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的定義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\ a{log_2}x,x>0\end{array}\right.$,且f(-1)=f(2),則$f({\frac{1}{4}})$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各組函數(shù)f(x)與g(x)的圖象相同的是( 。
A.f(x)=x,g(x)=($\sqrt{x}$)2B.$f(x)=\frac{{{x^2}-4}}{x-2}$與g(x)=x+2
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,(x≥0)}\\{-x,(x<0)}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題,正確命題的個(gè)數(shù)為(  )
①若tanA•tanB>1,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC一定是等邊三角形;
④在銳角△ABC中,一定有sinA>cosB.
⑤在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$,則△ABC一定是等邊三角形.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:x2-x-2>0,q:|x|<a,若¬p是q的必要而不充分條件,則實(shí)數(shù)a的取值范圍是(  )
A.a<1B.a≤1C.a<2D.a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x5-m是定義在[-3-m,7-m]上的奇函數(shù),則f(m)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)過點(diǎn)A(-5,-4)作一直線l,使它與兩坐標(biāo)軸相交且與兩軸所圍成的三角形面積為5,求其直線方程.(2)已知圓M過兩點(diǎn)A(1,-1),B(-1,1),且圓心M在x+y-2=0上,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.背寫課本中的部分公式
(1)基本性質(zhì):①loga1=0;②logaa=1;③a${\;}^{lo{g}_{a}N}$=N.
1、對(duì)數(shù)的運(yùn)算
性質(zhì):如果a>0,且a≠1,M>0,N>0,那么:
loga(M•N)=logaM+logaN;
loga$\frac{M}{N}$=logaM-logaN;
logaMn=nlogaM(n∈R).
2、換底公式:logab=$\frac{{log}_{c}b}{{log}_{c}a}$(a>0且a≠1;c>0且c≠1;b>0)
換底公式的變形公式:①logab•logba=1;②log${\;}_{\frac{1}{a}}$b=-logab;③log${\;}_{{a}^{n}}$bm=$\frac{m}{n}{log}_{a}b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過M(2,1),N(2$\sqrt{2}$,0)兩點(diǎn).
(1)求橢圓E的方程;
(2)已知定點(diǎn)Q(0,2),P點(diǎn)為橢圓上的動(dòng)點(diǎn),求|PQ|最大值及相應(yīng)的P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案