3.若球的大圓的面積擴(kuò)大為原來的2倍,則球的表面積擴(kuò)大為原來的(  )
A.8倍B.4倍C.2$\sqrt{2}$倍D.2倍

分析 球的大圓的面積擴(kuò)大為原來的2倍,球的半徑擴(kuò)大為原來的$\sqrt{2}$倍,由此得到球的表面積擴(kuò)大為原來的2倍.

解答 解:設(shè)球半徑為R,
∵球的大圓的面積擴(kuò)大為原來的2倍,
∴球的半徑擴(kuò)大為原來的$\sqrt{2}$倍,為$\sqrt{2}R$,
∴球的表面積擴(kuò)大為原來的($\sqrt{2}$)2=2倍.
故選:D.

點評 本題考查球的表面積擴(kuò)大為原來的多少倍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意球的大圓面積及表面積的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)是定義在[-1,1]上的增函數(shù),且f(x+1)=f(2x+3),則x的取值范圍是{-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù).且當(dāng)0<x≤1時.f(x)=lg(x2+9),則(1)函數(shù)f(x)的表達(dá)式為$\left\{\begin{array}{l}{lg(x^2+9),0<x≤1}\\{-lg(x^2+9),-1≤x<0}\end{array}\right.$(2)函數(shù)f(x)最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知Sn為數(shù)列{an}的前n項和,$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{4}$+…+$\frac{{a}_{n-1}}{n}$=an-2(n≥2),且a1=2.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{(3{a}_{n}-5)(3{a}_{n+1}-5)}$,求數(shù)列{bn}的前n項和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一個圓柱的主視圖的周長為12,且底面半徑為1,則該圓柱的表面積為( 。
A.B.10πC.16πD.$\frac{8}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)Z滿足|Z-4|+|Z+4|=10.則|Z|的取值范圍為[3,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡下列各式:
(1)$\frac{\sqrt{1-2sin10°cos10°}}{sin10°-\sqrt{1-si{n}^{2}10°}}$;
(2)$\sqrt{\frac{1-sinα}{1+sinα}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$,其中sinα•tanα<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,|F1F2|=2c,點A在橢圓上,且AF1垂直于x軸,$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=c2,則橢圓的離心率e等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列判斷錯誤的是(  )
A.若p∧q為假命題,則p,q至少之一為假命題
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.若$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow$是真命題
D.若am2<bm2,則a<b否命題是假命題

查看答案和解析>>

同步練習(xí)冊答案