已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(2,1).
(1)若|
a
|=|
b
|,
π
4
<θ<π,求θ的值;
(2)若
a
b
,求tanθ的值.
考點:平面向量數(shù)量積的運算,平面向量共線(平行)的坐標表示
專題:平面向量及應(yīng)用
分析:(1)由條件根據(jù)求向量的模的方法,求得cos2θ=-1,或 sin2θ=-1. 再根據(jù)
π
4
<θ<π,求得2θ 的值,可得θ的值.
(2)由
a
b
,利用兩個向量共線的性質(zhì),求得tanθ 的值.
解答: 解:(1)∵向量
a
=(sinθ,cosθ-2sinθ),
b
=(2,1),|
a
|=|
b
|,
sin2θ+(cosθ-2sinθ)2
=
5
,求得sin2θ-sinθcosθ=1,即 cos2θ+sin2θ=-1,
∴cos2θ=-1,或 sin2θ=-1. 
再根據(jù)
π
4
<θ<π,∴2θ=π 或2θ=
2
,求得θ=
π
2
或θ=
4

(2)由
a
b
,可得
sinθ
2
=
cosθ-2sinθ
1
,求得5sinθ=2cosθ,即tanθ=
2
5
點評:本題主要考查求向量的模的方法,兩個向量共線的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+3
-
3-x
,求f(x)的定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個小球從 M處投入,通過管道自上而下落A或B或C.已知小球從每個叉口落入左右兩個管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設(shè)為l,2,3等獎.
(Ⅰ)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量ξ為獲得k(k=1,2,3)等獎的折扣率,求隨機變量ξ的分布列及期望Eξ;
(Ⅱ)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量η為獲得1等獎或2等獎的人次,求P(η=2)和η的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
p
x
(p>0),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是AA1的中點,CD⊥B1D.
(1)證明:CD⊥B1C1;
(2)平面CDB1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實軸長為2a,虛軸長為2b的雙曲線S的焦點在x軸上,直線y=-
3
x,|
OA
|2+|
OB
|2=
4
3
|
OA
|2•|
OB
|2
是雙曲線S的一條漸近線,而且原點O,點A(a,0)和點B(0,-b)使等式成立.
(Ⅰ)求雙曲線S的方程;
(Ⅱ)若雙曲線S上存在兩個點關(guān)于直線l:y=kx+4對稱,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了分析某個高一學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對他前7次考試的數(shù)學(xué)成績x、物理成績y進行分析.下面是該生7次考試的成績.
數(shù)學(xué)888311792108100112
物理949110896104101106
(1)他的數(shù)學(xué)成績與物理成績哪個更穩(wěn)定?請給出你的證明.
(2)已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的物理成績達到115分,請你估計他的數(shù)學(xué)成績大約是多少?并請你根據(jù)物理成績與數(shù)學(xué)成績的相關(guān)性,給出該生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.
參考公式:回歸直線的方程是:
?
y
=bx+a

其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi
對應(yīng)的回歸估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OPQ中,
OA
=
1
2
OP
OB
=
1
3
OQ
,QA與PB相交于點C,設(shè)
OP
=
a
,
OQ
=
b


(1)用
a
,
b
表示
OC
;
(2)過C點作直線l分別與線段OQ,OP交于點M,N,設(shè)
OM
OQ
ON
OP
,求證:
2
+
1
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log23×log34×log45×…×log1516=
 

查看答案和解析>>

同步練習(xí)冊答案